cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132442 Triangle whose n-th row consists of the first n terms of the n-th row of A134866.

Original entry on oeis.org

1, 1, 3, 1, 1, 4, 1, 3, 1, 7, 1, 1, 1, 1, 6, 1, 3, 4, 3, 1, 12, 1, 1, 1, 1, 1, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 3, 1, 3, 6, 3, 1, 3, 1, 18, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 3, 4, 7, 1, 12, 1, 7, 4, 3, 1, 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 3, 1, 3, 1, 3, 8, 3, 1, 3, 1, 3, 1, 24
Offset: 1

Views

Author

Gary W. Adamson, Nov 14 2007

Keywords

Comments

Previous name: Triangle, n-th row = first n terms of n-th row of an array formed by A051731 * A127093 (transform).
Right border = sigma(n), A000203.
Row sums = A038040.
The function T(n,k) = T(k,n) is defined for k > n, but only the values of k in 1..n as a triangular array are listed here.

Examples

			First few rows of the A134866 array:
  1,  1,  1,  1,  1,  1,  1, ...
  1,  3,  1,  3,  1,  3,  1, ...
  1,  1,  4,  1,  1,  4,  1, ...
  1,  3,  1,  7,  1,  3,  1, ...
  1,  1,  1,  1,  6,  1,  1, ...
  1,  3,  4,  3,  1, 12,  1, ...
  ...
First few rows of the triangle:
  1;
  1,  3;
  1,  1,  4;
  1,  3,  1,  7;
  1,  1,  1,  1,  6;
  1,  3,  4,  3,  1, 12;
  1,  1,  1,  1,  1,  1,  8;
  1,  3,  1,  7,  1,  3,  1, 15;
  ...
		

Crossrefs

Cf. A038040 (row sums), A000203 (right border), A050873 (gcd(n,k)).
Cf. A000142 (determinant).
Cf. A134866.

Programs

  • Haskell
    a132442 n k = a132442_tabl !! (n-1) !! (k-1)
    a132442_row n = a132442_tabl !! (n-1)
    a132442_tabl = map (map a000203) a050873_tabl
    -- Reinhard Zumkeller, Dec 12 2015
  • Mathematica
    T[ n_, k_] := If[ n < 1 || k < 1, 0, If[ k > n, T[ k, n], If[ k == 1, 1, If[ n > k, T[ k, Mod[ n, k, 1]],  DivisorSigma [1, n]]]]] (* Michael Somos, Jul 18 2011 *)
  • PARI
    {T(n, k) = if( n<1 || k<1, 0, if( k>n, T(k, n), if( k==1, 1, if( n>k, T(k, (n-1)%k+1), sigma( n)))))} /* Michael Somos, Jul 18 2011 */
    

Formula

T(n,k) = A000203(gcd(n,k)). - Reinhard Zumkeller, Dec 12 2015

Extensions

Missing T(10,9) = 1 inserted by Reinhard Zumkeller, Dec 12 2015
Name edited by Michel Marcus, Dec 21 2022