A132442 Triangle whose n-th row consists of the first n terms of the n-th row of A134866.
1, 1, 3, 1, 1, 4, 1, 3, 1, 7, 1, 1, 1, 1, 6, 1, 3, 4, 3, 1, 12, 1, 1, 1, 1, 1, 1, 8, 1, 3, 1, 7, 1, 3, 1, 15, 1, 1, 4, 1, 1, 4, 1, 1, 13, 1, 3, 1, 3, 6, 3, 1, 3, 1, 18, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 1, 3, 4, 7, 1, 12, 1, 7, 4, 3, 1, 28, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14, 1, 3, 1, 3, 1, 3, 8, 3, 1, 3, 1, 3, 1, 24
Offset: 1
Examples
First few rows of the A134866 array: 1, 1, 1, 1, 1, 1, 1, ... 1, 3, 1, 3, 1, 3, 1, ... 1, 1, 4, 1, 1, 4, 1, ... 1, 3, 1, 7, 1, 3, 1, ... 1, 1, 1, 1, 6, 1, 1, ... 1, 3, 4, 3, 1, 12, 1, ... ... First few rows of the triangle: 1; 1, 3; 1, 1, 4; 1, 3, 1, 7; 1, 1, 1, 1, 6; 1, 3, 4, 3, 1, 12; 1, 1, 1, 1, 1, 1, 8; 1, 3, 1, 7, 1, 3, 1, 15; ...
Links
- Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened
Crossrefs
Programs
-
Haskell
a132442 n k = a132442_tabl !! (n-1) !! (k-1) a132442_row n = a132442_tabl !! (n-1) a132442_tabl = map (map a000203) a050873_tabl -- Reinhard Zumkeller, Dec 12 2015
-
Mathematica
T[ n_, k_] := If[ n < 1 || k < 1, 0, If[ k > n, T[ k, n], If[ k == 1, 1, If[ n > k, T[ k, Mod[ n, k, 1]], DivisorSigma [1, n]]]]] (* Michael Somos, Jul 18 2011 *)
-
PARI
{T(n, k) = if( n<1 || k<1, 0, if( k>n, T(k, n), if( k==1, 1, if( n>k, T(k, (n-1)%k+1), sigma( n)))))} /* Michael Somos, Jul 18 2011 */
Formula
T(n,k) = A000203(gcd(n,k)). - Reinhard Zumkeller, Dec 12 2015
Extensions
Missing T(10,9) = 1 inserted by Reinhard Zumkeller, Dec 12 2015
Name edited by Michel Marcus, Dec 21 2022
Comments