cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A050873 Triangular array T read by rows: T(n,k) = gcd(n,k).

Original entry on oeis.org

1, 1, 2, 1, 1, 3, 1, 2, 1, 4, 1, 1, 1, 1, 5, 1, 2, 3, 2, 1, 6, 1, 1, 1, 1, 1, 1, 7, 1, 2, 1, 4, 1, 2, 1, 8, 1, 1, 3, 1, 1, 3, 1, 1, 9, 1, 2, 1, 2, 5, 2, 1, 2, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 1, 2, 3, 4, 1, 6, 1, 4, 3, 2, 1, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

The function T(n,k) = T(k,n) is defined for all integer k,n but only the values for 1 <= k <= n as a triangular array are listed here.
For each divisor d of n, the number of d's in row n is phi(n/d). Furthermore, if {a_1, a_2, ..., a_phi(n/d)} is the set of positive integers <= n/d that are relatively prime to n/d then T(n,a_i * d) = d. - Geoffrey Critzer, Feb 22 2015
Starting with any row n and working downwards, consider the infinite rectangular array with k = 1..n. A repeating pattern occurs every A003418(n) rows. For example, n=3: A003418(3) = 6. The 6-row pattern starting with row 3 is {1,1,3}, {1,2,1}, {1,1,1}, {1,2,3}, {1,1,1}, {1,2,1}, and this pattern repeats every 6 rows, i.e., starting with rows {9,15,21,27,...}. - Bob Selcoe and Jamie Morken, Aug 02 2017

Examples

			Rows:
  1;
  1, 2;
  1, 1, 3;
  1, 2, 1, 4;
  1, 1, 1, 1, 5;
  1, 2, 3, 2, 1, 6; ...
		

Crossrefs

Cf. A003989.
Cf. A018804 (row sums), A245717.
Cf. A132442 (sums of divisors).
Cf. A003418.

Programs

  • Haskell
    a050873 = gcd
    a050873_row n = a050873_tabl !! (n-1)
    a050873_tabl = zipWith (map . gcd ) [1..] a002260_tabl
    -- Reinhard Zumkeller, Dec 12 2015, Aug 13 2013, Jun 10 2013
  • Mathematica
    ColumnForm[Table[GCD[n, k], {k, 12}, {n, k}], Center] (* Alonso del Arte, Jan 14 2011 *)
  • PARI
    {T(n, k) = gcd(n, k)} /* Michael Somos, Jul 18 2011 */
    

Formula

a(n) = gcd(A002260(n), A002024(n)); A054521(n) = A000007(a(n)). - Reinhard Zumkeller, Dec 02 2009
T(n,k) = A075362(n,k)/A051173(n,k), 1 <= k <= n. - Reinhard Zumkeller, Apr 25 2011
T(n, k) = T(k, n) = T(-n, k) = T(n, -k) = T(n, n+k) = T(n+k, k). - Michael Somos, Jul 18 2011
T(n,k) = A051173(n,k) / A051537(n,k). - Reinhard Zumkeller, Jul 07 2013

A134866 Table read by antidiagonals: T(n,k) = sigma(gcd(n,k)).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 7, 1, 3, 1, 1, 1, 4, 1, 1, 4, 1, 1, 1, 3, 1, 3, 6, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 7, 1, 12, 1, 7, 4, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 3, 8, 3, 1, 3, 1, 3, 1
Offset: 1

Views

Author

Gary W. Adamson, Nov 14 2007

Keywords

Comments

Previous name was: Triangle, antidiagonals of an array formed by A051731 * A127093 (transform).
Row sums give A094471.

Examples

			First few rows of the array:
  1, 1, 1, 1, 1, 1, 1, ...
  1, 3, 1, 3, 1, 3, 1, ...
  1, 1, 4, 1, 1, 4, 1, ...
  1, 3, 1, 7, 1, 3, 1, ...
  1, 1, 1, 1, 6, 1, 1, ...
  ...
First antidiagonals:
  1;
  1, 1;
  1, 3, 1;
  1, 1, 1, 1;
  1, 3, 4, 3, 1;
  1, 1, 1, 1, 1, 1;
  1, 3, 1, 7, 1, 3, 1;
  1, 1, 4, 1, 1, 4, 1, 1;
  1, 3, 1, 3, 6, 3, 1, 3, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, GCD[#, k]] &[n - k + 1], {n, 13}, {k, n}] // Flatten (* Michael De Vlieger, Dec 19 2022 *)
  • PARI
    T(n, k) = sigma(gcd(n, k)); \\ Michel Marcus, Dec 19 2022

Formula

T(n,k) = A000203(A050873(n,k)). - Michel Marcus, Dec 19 2022

Extensions

New name and data corrected by Michel Marcus, Dec 19 2022

A265652 Triangle read by rows: T(n,k) is the sum of the union of the divisors of n and k.

Original entry on oeis.org

1, 3, 3, 4, 6, 4, 7, 7, 10, 7, 6, 8, 9, 12, 6, 12, 12, 12, 16, 17, 12, 8, 10, 11, 14, 13, 19, 8, 15, 15, 18, 15, 20, 24, 22, 15, 13, 15, 13, 19, 18, 21, 20, 27, 13, 18, 18, 21, 22, 18, 27, 25, 30, 30, 18, 12, 14, 15, 18, 17, 23, 19, 26, 24, 29, 12, 28, 28, 28, 28, 33, 28, 35, 36, 37, 43, 39, 28
Offset: 1

Views

Author

Keywords

Comments

Does every positive integer except 2 and 5 occur here? The stronger form of Goldbach's conjecture (every even integer > 6 is the sum of two distinct primes) suffices to show that every odd integer (except 5) is in the sequence, since T(p,q) = p + q + 1.

Examples

			Triangle begins:
   1
   3  3
   4  6  4
   7  7 10  7
   6  8  9 12  6
  12 12 12 16 17 12
  ...
The divisors of 3 are {1, 3}; the divisors of 4 are {1, 2, 4}. The union is {1, 2, 3, 4}, summing to 10; so T(4,3) = 10.
		

Crossrefs

Cf. A000203 (first column and main diagonal).
T(2n,n) gives A062731.

Programs

  • Haskell
    a265652 n k = a265652_tabl !! (n-1) !! (k-1)
    a265652_row n = a265652_tabl !! (n-1)
    a265652_tabl = zipWith (zipWith (-))
       (zipWith (map . (+)) a000203_list a245093_tabl) a132442_tabl
    -- Reinhard Zumkeller, Dec 12 2015
  • Maple
    seq(seq(numtheory:-sigma(n) + numtheory:-sigma(k) - numtheory:-sigma(igcd(n,k)), k=1..n), n=1..10); # Robert Israel, Dec 17 2015
  • Mathematica
    Table[Total@ Union[Divisors@ n, Divisors@ k], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Dec 18 2015 *)
  • PARI
    T(n,k) = sigma(n) + sigma(k) - sigma(gcd(n,k))
    

Formula

T(n,k) = sigma(n) + sigma(k) - sigma(gcd(n,k)).
T(n,k) = A000203(n) + A245093(n,k) - A132442(n,k). - Reinhard Zumkeller, Dec 12 2015
Showing 1-3 of 3 results.