cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132469 a(n) = (2^(5*n) - 1)/31.

Original entry on oeis.org

0, 1, 33, 1057, 33825, 1082401, 34636833, 1108378657, 35468117025, 1134979744801, 36319351833633, 1162219258676257, 37191016277640225, 1190112520884487201, 38083600668303590433, 1218675221385714893857, 38997607084342876603425, 1247923426698972051309601
Offset: 0

Views

Author

A.K. Devaraj, Aug 22 2007

Keywords

Comments

Partial sums of powers of 32 (A009976), a.k.a. q-numbers for q=32. - M. F. Hasler, Nov 05 2012

References

  • A. K. Devaraj, "Minimum Universal Exponent Generalisation of Fermat's Theorem", in ISSN #1550-3747, Proceedings of Hawaii Intl Conference on Statistics, Mathematics & Related Fields, 2004.

Crossrefs

Programs

Formula

a(n) = (32^n - 1)/31 = floor(32^n/31) = Sum_{k=0..n} 32^k. - M. F. Hasler, Nov 05 2012
G.f.: x/((1 - x)*(1 - 32*x)). - Bruno Berselli, Nov 06 2012
E.g.f.: exp(x)*(exp(31*x) - 1)/31. - Stefano Spezia, Mar 23 2023

Extensions

Edited and extended by Robert G. Wilson v, Aug 22 2007
Edited and extended to offset 0 by M. F. Hasler, Nov 05 2012