cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A051728 Smallest number at distance 2n from nearest prime.

Original entry on oeis.org

2, 0, 23, 53, 409, 293, 211, 1341, 1343, 2179, 3967, 15705, 16033, 19635, 31425, 24281, 31429, 31431, 31433, 155959, 38501, 58831, 203713, 268343, 206699, 370311, 370313, 370315, 370317, 1349591, 1357261, 1272749, 1357265, 1357267, 2010801, 2010803, 2010805, 2010807
Offset: 0

Views

Author

Keywords

Comments

a(0) = 2. For n > 0, let f(m) = minimal distance from m to closest prime (excluding m itself). The a(n) = min { m : f(m) = 2n }.
f(m) is tabulated in A051700. - R. J. Mathar, Nov 18 2007

Crossrefs

Programs

  • Maple
    A051700 := proc(m) if m <= 2 then op(m+1,[2,1,1]) ; else min(nextprime(m)-m,m-prevprime(m)) ; fi ; end: A051728 := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = 2 * n then RETURN(m) ; fi ; od: fi ; end: seq(A051728(n),n=0..20) ; # R. J. Mathar, Nov 18 2007
  • Mathematica
    a[n_] := Module[{m}, If[n == 0, Return[2], For[m = 0, True, m++, If[Min[NextPrime[m]-m, m-NextPrime[m, -1]] == 2*n, Return[m]]]]]; Table[Print[an = a[n]]; an, {n, 0, 33}] (* Jean-François Alcover, Feb 11 2014, after R. J. Mathar *)
    Join[{2},With[{t=Table[{n,Min[n-NextPrime[n,-1],NextPrime[n]-n]},{n,0,1358000}]},Table[SelectFirst[t,#[[2]]==2k&],{k,33}]][[All,1]]] (* Harvey P. Dale, Aug 13 2019 *)

Formula

a(n) = A051652(2*n). - Sean A. Irvine, Oct 01 2021

Extensions

More terms from James Sellers, Dec 07 1999
More terms from Amiram Eldar, Aug 28 2021

A132861 Smallest number at distance 3n from nearest prime (variant 2).

Original entry on oeis.org

2, 26, 53, 532, 211, 1342, 2179, 15704, 16033, 31424, 24281, 31430, 31433, 155960, 58831, 360698, 206699, 370312, 370315, 492170, 1357261, 1357264, 1357267, 2010802, 2010805, 4652428, 12485141, 17051788, 17051791, 17051794, 11117213, 20831416, 10938023, 20831422
Offset: 0

Views

Author

R. J. Mathar, Nov 18 2007

Keywords

Comments

Let f(m) be the distance to the nearest prime as defined in A051700(m). Then a(n) = min {m: f(m) = 3n} for n > 0. A132470 uses A051699(m) to define the distance. a(n) <= A132470(n) because here primes at the start or end of a prime gap of size 3n may be picked, which would be discarded in A132470 for n>0; this gives a chance to minimize m here further than in A132470.

Crossrefs

Programs

  • Maple
    A051700 := proc(m) if m <= 2 then op(m+1,[2,1,1]) ; else min(nextprime(m)-m,m-prevprime(m)) ; fi ; end: a := proc(n) local m ; if n = 0 then RETURN(2); else for m from 0 do if A051700(m) = 3 * n then RETURN(m) ; fi ; od: fi ; end: seq(a(n),n=0..18);
  • Python
    # see link for faster program
    from sympy import prevprime, nextprime
    def A051700(n):
      return [2, 1, 1][n] if n < 3 else min(n-prevprime(n), nextprime(n)-n)
    def a(n):
      if n == 0: return 2
      m = 0
      while A051700(m) != 3*n: m += 1
      return m
    print([a(n) for n in range(13)]) # Michael S. Branicky, Feb 26 2021

Formula

a(n) = min {m : A051700(m) = 3n} for n > 0.
a(n) = A051652(3*n). [From R. J. Mathar, Jul 22 2009]

Extensions

7 more terms from R. J. Mathar, Jul 22 2009
4 more terms from R. J. Mathar, Aug 21 2018
a(30) and beyond and edits from Michael S. Branicky, Feb 26 2021
Showing 1-2 of 2 results.