cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132593 Nonnegative integer solutions X to the equation: X(X + 1) - 10*Y^2 = 0.

Original entry on oeis.org

0, 9, 360, 13689, 519840, 19740249, 749609640, 28465426089, 1080936581760, 41047124680809, 1558709801289000, 59189925324301209, 2247658452522156960, 85351831270517663289, 3241121929827149048040, 123077281502161146162249
Offset: 0

Views

Author

Mohamed Bouhamida, Nov 14 2007

Keywords

Comments

Also, numbers n such that 5*A000217(n) is a square. [Bruno Berselli, Dec 16 2013]

Crossrefs

Cf. A233474 (numbers n such that 5*A000217(n)-1 is a square).

Programs

  • Mathematica
    LinearRecurrence[{39,-39,1},{0,9,360},30] (* Harvey P. Dale, Jun 01 2014 *)

Formula

a(0)=0, a(1)=9 and a(n) = 38*a(n-1) - a(n-2) + 18.
a(n) = (A078986(n) - 1)/2. - Max Alekseyev, Nov 13 2009
G.f.: -9*x*(x+1)/((x-1)*(x^2-38*x+1)). - Colin Barker, Oct 24 2012
From Amiram Eldar, Feb 15 2022: (Start)
sqrt(a(n)+1) - sqrt(n) = (sqrt(10)-3)^n (Wilke, 1977).
a(n) = ((Sum_{k=0..n} binomial(2*n, 2*k) * 10^(n-k) * 9*k)- 1)/2 (Klamkin, 1978).
a(n) = sinh(n*log(sqrt(10)+3))^2 (MaScoT Problems Group, 1980). (End)

Extensions

More terms from Max Alekseyev, Nov 13 2009