A132733 Triangle T(n, k) = 4*binomial(n, k) - 5 with T(n, 0) = T(n, n) = 1, read by rows.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 11, 19, 11, 1, 1, 15, 35, 35, 15, 1, 1, 19, 55, 75, 55, 19, 1, 1, 23, 79, 135, 135, 79, 23, 1, 1, 27, 107, 219, 275, 219, 107, 27, 1, 1, 31, 139, 331, 499, 499, 331, 139, 31, 1, 1, 35, 175, 475, 835, 1003, 835, 475, 175, 35, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 1, 3, 1; 1, 7, 7, 1; 1, 11, 19, 11, 1; 1, 15, 35, 35, 15, 1; 1, 19, 55, 75, 55, 19, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Programs
-
Magma
T:= func< n,k | k eq 0 or k eq n select 1 else 4*Binomial(n,k) - 5 >; [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
-
Mathematica
T[n_, k_]:= If[k==0 || k==n, 1, 4*Binomial[n, k] - 5]; Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
-
PARI
t(n,k) = 4*binomial(n, k) + 2*((k==0) || (k==n)) - 5*(k<=n); \\ Michel Marcus, Feb 12 2014
-
Sage
def T(n, k): return 1 if (k==0 or k==n) else 4*binomial(n, k) - 5 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
Formula
From G. C. Greubel, Feb 14 2021: (Start)
T(n, k) = 4*binomial(n, k) - 5 with T(n, 0) = T(n, n) = 1.
Sum_{k=0..n} T(n, k) = 2^(n + 2) - (5*n + 1) - 2*[n=0] = A132734(n). (End)
Extensions
More terms from Michel Marcus, Feb 12 2014