A132740 Largest divisor of n coprime to 10.
1, 1, 3, 1, 1, 3, 7, 1, 9, 1, 11, 3, 13, 7, 3, 1, 17, 9, 19, 1, 21, 11, 23, 3, 1, 13, 27, 7, 29, 3, 31, 1, 33, 17, 7, 9, 37, 19, 39, 1, 41, 21, 43, 11, 9, 23, 47, 3, 49, 1, 51, 13, 53, 27, 11, 7, 57, 29, 59, 3, 61, 31, 63, 1, 13, 33, 67, 17, 69, 7, 71, 9, 73, 37, 3, 19, 77, 39, 79, 1, 81
Offset: 1
Examples
a(1050) = a(2*3*5*5*7) = 3*7 = 21.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a132740 = a132739 . a000265 -- Reinhard Zumkeller, Apr 08 2011
-
Maple
A132740 := proc(n) n/A132741(n) ; end proc: # R. J. Mathar, Sep 06 2011
-
Mathematica
a[n_] := FixedPoint[ Quotient[#, GCD[#, 10]]& , n]; Table[a[n], {n, 1, 81}] (* Jean-François Alcover, Sep 06 2011, after Vladimir Joseph Stephan Orlovsky *) Table[SelectFirst[Reverse[Divisors[n]],CoprimeQ[#,10]&],{n,90}] (* Uses the SelectFirst function from Mathematica version 10. - Harvey P. Dale, Mar 22 2015 *) a[n_] := n / Times @@ ({2, 5}^IntegerExponent[n, {2, 5}]); Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
-
PARI
a(n)=n/5^valuation(n,5)>>valuation(n,2) \\ Charles R Greathouse IV, Sep 06 2011
Formula
a(A003592(n)) = 1.
Multiplicative with a(2^e) = 1, a(5^e) = 1 and a(p^e) = p^e for p = 3 and p >= 7.
Dirichlet g.f. zeta(s-1)*(2^s-2)*(5^s-5)/((2^s-1)*(5^s-1)). - R. J. Mathar, Sep 06 2011
Sum_{k=1..n} a(k) ~ (5/18) * n^2. - Amiram Eldar, Nov 28 2022
Extensions
Edited by M. F. Hasler, Apr 25 2017
Comments