A132761 a(n) = n*(n+17).
0, 18, 38, 60, 84, 110, 138, 168, 200, 234, 270, 308, 348, 390, 434, 480, 528, 578, 630, 684, 740, 798, 858, 920, 984, 1050, 1118, 1188, 1260, 1334, 1410, 1488, 1568, 1650, 1734, 1820, 1908, 1998, 2090, 2184, 2280, 2378, 2478, 2580, 2684, 2790, 2898, 3008, 3120
Offset: 0
Links
- Muniru A Asiru, Table of n, a(n) for n = 0..5000
- Emeric Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, Vol. 6, No. 2 (2015), pp. 93-102.
- Ivan Gutman and Kinkar Ch. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., No. 50 (2004), pp. 83-92.
- Felix P. Muga II, Extending the Golden Ratio and the Binet-de Moivre Formula, Preprint on ResearchGate, March 2014.
- Eric Weisstein's World of Mathematics, Helm Graph.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
GAP
List([0..50],n->n*(n+17)); # Muniru A Asiru, May 11 2018
-
Mathematica
Table[n(n+17),{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{0,18,38},50] (* Harvey P. Dale, Sep 12 2020 *)
-
PARI
a(n)=n*(n+17) \\ Charles R Greathouse IV, Nov 07 2016
Formula
a(n) = n*(n + 17).
a(n) = A132760(n) + 2*n = A132765(n) - 6*n = A098849(n) + n = A120071(n) - 3*n. - Zerinvary Lajos, Feb 17 2008
a(n) = 2*n + a(n-1) + 16 for n > 0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: 2*x*(9 - 8*x)/(1 - x)^3. - Emeric Deutsch, Nov 07 2016
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(17)/17 = A001008(17)/A102928(17) = 42142223/208288080, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/17 - 1768477/41657616. (End)
From Elmo R. Oliveira, Dec 12 2024: (Start)
E.g.f.: exp(x)*x*(18 + x).
a(n) = 2*A056126(n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2. (End)
Comments