cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132766 a(n) = n*(n+24).

Original entry on oeis.org

0, 25, 52, 81, 112, 145, 180, 217, 256, 297, 340, 385, 432, 481, 532, 585, 640, 697, 756, 817, 880, 945, 1012, 1081, 1152, 1225, 1300, 1377, 1456, 1537, 1620, 1705, 1792, 1881, 1972, 2065, 2160, 2257, 2356, 2457, 2560, 2665, 2772, 2881, 2992, 3105, 3220, 3337
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (n + 24), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 25, 52}, 50] (* Harvey P. Dale, Feb 11 2016 *)
  • PARI
    a(n)=n*(n+24) \\ Charles R Greathouse IV, Jun 17 2017
    
  • Sage
    [n*(n+24) for n in (0..50)] # G. C. Greubel, Mar 14 2022

Formula

a(n) = n*(n + 24).
a(n) = 2*n + a(n-1) + 23 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=25, a(2)=52; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 11 2016
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(24)/24 = A001008(24)/A102928(24) = 1347822955/8566766208, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 3602044091/128501493120. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: 2*x*(13 - 12*x)/(1-x)^3.
E.g.f.: x*(26 + x)*exp(x). (End)