cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A132765 a(n) = n*(n + 23).

Original entry on oeis.org

0, 24, 50, 78, 108, 140, 174, 210, 248, 288, 330, 374, 420, 468, 518, 570, 624, 680, 738, 798, 860, 924, 990, 1058, 1128, 1200, 1274, 1350, 1428, 1508, 1590, 1674, 1760, 1848, 1938, 2030, 2124, 2220, 2318, 2418, 2520, 2624, 2730, 2838, 2948, 3060, 3174, 3290, 3408
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 23).
a(n) = 2*n + a(n-1) + 22 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(12 - 11*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(23)/23 = A001008(23)/A102928(23) = 444316699/2736605872, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/23 - 3825136961/123147264240. (End)
E.g.f.: x*(24 + x)*exp(x). - G. C. Greubel, Mar 14 2022

A132762 a(n) = n*(n + 19).

Original entry on oeis.org

0, 20, 42, 66, 92, 120, 150, 182, 216, 252, 290, 330, 372, 416, 462, 510, 560, 612, 666, 722, 780, 840, 902, 966, 1032, 1100, 1170, 1242, 1316, 1392, 1470, 1550, 1632, 1716, 1802, 1890, 1980, 2072, 2166, 2262, 2360, 2460, 2562, 2666, 2772, 2880, 2990, 3102, 3216
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 18 for n > 0, a(0) = 0. - Vincenzo Librandi, Aug 03 2010
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(10 - 9*x)/(1-x)^3. (End)
a(n) = 2*A051942(n+9). - R. J. Mathar, Sep 05 2018
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(19)/19 = A001008(19)/A102928(19) = 275295799/1474352880, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/19 - 33464927/884611728. (End)
E.g.f.: x*(20 + x)*exp(x). - G. C. Greubel, Mar 14 2022

A132764 a(n) = n*(n+22).

Original entry on oeis.org

0, 23, 48, 75, 104, 135, 168, 203, 240, 279, 320, 363, 408, 455, 504, 555, 608, 663, 720, 779, 840, 903, 968, 1035, 1104, 1175, 1248, 1323, 1400, 1479, 1560, 1643, 1728, 1815, 1904, 1995, 2088, 2183, 2280, 2379, 2480, 2583, 2688, 2795, 2904, 3015, 3128, 3243, 3360
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Examples

			a(1)=2*1+0+21=23; a(2)=2*2+23+21=48; a(3)=2*3+48+21=75. - _Vincenzo Librandi_, Aug 03 2010
		

Crossrefs

Programs

Formula

a(n) = n*(n + 22).
a(n) = 2*n + a(n-1) + 21 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=23, a(2)=48, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 02 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(22)/22 = A001008(22)/A102928(22) = 19093197/113809696, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 156188887/5121436320. (End)
From G. C. Greubel, Mar 14 2022: (Start)
G.f.: x*(23 - 21*x)/(1-x)^3.
E.g.f.: x*(23 + x)*exp(x). (End)

A132763 a(n) = n*(n+21).

Original entry on oeis.org

0, 22, 46, 72, 100, 130, 162, 196, 232, 270, 310, 352, 396, 442, 490, 540, 592, 646, 702, 760, 820, 882, 946, 1012, 1080, 1150, 1222, 1296, 1372, 1450, 1530, 1612, 1696, 1782, 1870, 1960, 2052, 2146, 2242, 2340, 2440, 2542, 2646, 2752, 2860, 2970, 3082, 3196, 3312
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 21).
a(n) = 2*n + a(n-1) + 20 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=22, a(2)=46, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, May 25 2014
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(21)/21 = A001008(21)/A102928(21) = 18858053/108636528, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/21 - 166770367/4888643760. (End)
From Stefano Spezia, Jan 30 2021: (Start)
O.g.f.: 2*x*(11 - 10*x)/(1 - x)^3.
E.g.f.: x*(22 + x)*exp(x). (End)

A132767 a(n) = n*(n + 25).

Original entry on oeis.org

0, 26, 54, 84, 116, 150, 186, 224, 264, 306, 350, 396, 444, 494, 546, 600, 656, 714, 774, 836, 900, 966, 1034, 1104, 1176, 1250, 1326, 1404, 1484, 1566, 1650, 1736, 1824, 1914, 2006, 2100, 2196, 2294, 2394, 2496, 2600, 2706, 2814, 2924, 3036, 3150, 3266, 3384
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Comments

a(n) is the Zagreb 1 index of the Mycielskian of the cycle graph C[n]. See p. 205 of the D. B. West reference. - Emeric Deutsch, Nov 04 2016

References

  • Douglas B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, NJ, 2001.

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 24 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(n) = n^2 + 25*n. - Omar E. Pol, Nov 04 2016
From Chai Wah Wu, Dec 17 2016: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 2.
G.f.: 2*x*(13 - 12*x)/(1-x)^3. (End)
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(25)/25 = A001008(25)/A102928(25) = 34052522467/223092870000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/25 - 19081066231/669278610000. (End)
E.g.f.: x*(26 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132768 a(n) = n*(n + 26).

Original entry on oeis.org

0, 27, 56, 87, 120, 155, 192, 231, 272, 315, 360, 407, 456, 507, 560, 615, 672, 731, 792, 855, 920, 987, 1056, 1127, 1200, 1275, 1352, 1431, 1512, 1595, 1680, 1767, 1856, 1947, 2040, 2135, 2232, 2331, 2432, 2535, 2640, 2747, 2856, 2967, 3080, 3195, 3312, 3431
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = n*(n + 26).
a(n) = 2*n + a(n-1) + 25, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(26)/26 = A001008(26)/A102928(26) = 34395742267/232016584800, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 18051406831/696049754400. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: x*(27 - 25*x)/(1-x)^3.
E.g.f.: x*(27 + x)*exp(x). (End)

A132769 a(n) = n*(n + 27).

Original entry on oeis.org

0, 28, 58, 90, 124, 160, 198, 238, 280, 324, 370, 418, 468, 520, 574, 630, 688, 748, 810, 874, 940, 1008, 1078, 1150, 1224, 1300, 1378, 1458, 1540, 1624, 1710, 1798, 1888, 1980, 2074, 2170, 2268, 2368, 2470, 2574, 2680, 2788, 2898, 3010, 3124, 3240, 3358, 3478
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 26, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=28, a(2)=58; for n > 2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Oct 14 2012
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(27)/27 = A001008(27)/A102928(27) = 312536252003/2168462696400, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/27 - 57128792093/2168462696400. (End)
From Elmo R. Oliveira, Nov 29 2024: (Start)
G.f.: 2*x*(14 - 13*x)/(1 - x)^3.
E.g.f.: exp(x)*x*(28 + x).
a(n) = 2*A132756(n). (End)

A132770 a(n) = n*(n + 28).

Original entry on oeis.org

0, 29, 60, 93, 128, 165, 204, 245, 288, 333, 380, 429, 480, 533, 588, 645, 704, 765, 828, 893, 960, 1029, 1100, 1173, 1248, 1325, 1404, 1485, 1568, 1653, 1740, 1829, 1920, 2013, 2108, 2205, 2304, 2405, 2508, 2613, 2720, 2829, 2940, 3053, 3168, 3285, 3404, 3525
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 27, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(28)/28 = A001008(28)/A102928(28) = 315404588903/2248776129600, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7751493599/321253732800. (End)
G.f.: x*(29 - 27*x)/(1-x)^3. - Harvey P. Dale, Aug 03 2021
E.g.f.: x*(29 + x)*exp(x). - G. C. Greubel, Mar 13 2022

A132771 a(n) = n*(n + 29).

Original entry on oeis.org

0, 30, 62, 96, 132, 170, 210, 252, 296, 342, 390, 440, 492, 546, 602, 660, 720, 782, 846, 912, 980, 1050, 1122, 1196, 1272, 1350, 1430, 1512, 1596, 1682, 1770, 1860, 1952, 2046, 2142, 2240, 2340, 2442, 2546, 2652, 2760, 2870, 2982, 3096, 3212, 3330, 3450, 3572
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

a(n) = 2*n + a(n-1) + 28 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(29)/29 = A001008(29)/A102928(29) = 9227046511387/67543597321200, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(2)/29 - 236266661971/9649085331600. (End)
From G. C. Greubel, Mar 13 2022: (Start)
G.f.: 2*(15*x - 14*x^2)/(1-x)^3.
E.g.f.: x*(30 + x)*exp(x). (End)

A132772 a(n) = n*(n + 30).

Original entry on oeis.org

0, 31, 64, 99, 136, 175, 216, 259, 304, 351, 400, 451, 504, 559, 616, 675, 736, 799, 864, 931, 1000, 1071, 1144, 1219, 1296, 1375, 1456, 1539, 1624, 1711, 1800, 1891, 1984, 2079, 2176, 2275, 2376, 2479, 2584, 2691, 2800, 2911, 3024, 3139, 3256, 3375, 3496, 3619
Offset: 0

Views

Author

Omar E. Pol, Aug 28 2007

Keywords

Crossrefs

Programs

Formula

G.f.: x*(31-29*x)/(1-x)^3. - R. J. Mathar, Nov 14 2007
a(n) = 2*n + a(n-1) + 29 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
a(0)=0, a(1)=31, a(2)=64, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Mar 06 2015
From Amiram Eldar, Jan 16 2021: (Start)
Sum_{n>=1} 1/a(n) = H(30)/30 = A001008(30)/A102928(30) = 9304682830147/69872686884000, where H(k) is the k-th harmonic number.
Sum_{n>=1} (-1)^(n+1)/a(n) = 225175759291/9981812412000. (End)
E.g.f.: x*(31 + x)*exp(x). - G. C. Greubel, Mar 13 2022
Showing 1-10 of 11 results. Next