A132774 A natural number operator.
1, 2, 3, 0, 4, 5, 0, 0, 6, 7, 0, 0, 0, 8, 9, 0, 0, 0, 0, 10, 11, 0, 0, 0, 0, 0, 12, 13, 0, 0, 0, 0, 0, 0, 14, 15, 0, 0, 0, 0, 0, 0, 0, 16, 17, 0, 0, 0, 0, 0, 0, 0, 0, 18, 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 22, 23
Offset: 1
Examples
First few rows of the triangle are: 1; 2, 3; 0, 4, 5; 0, 0, 6, 7; 0, 0, 0, 8, 9; 0, 0, 0, 0, 10, 11; ...
Links
- Stefano Spezia, First 150 rows of the triangle, flattened
Programs
-
Mathematica
T[n_,k_]:=If[n==k,2n-1,If[n-k==1,2(n-1),0]]; Flatten[Table[T[n,k],{n,12},{k,n}]] (* Stefano Spezia, Dec 21 2021 *) Join[{1},Flatten[{#,PadRight[{},#[[1]]/2,0]}&/@Partition[Range[2,30],2]]] (* Harvey P. Dale, Mar 24 2024 *) Join[{1},Flatten[Table[Join[Range[2n,2n+1],PadRight[{},n,0]],{n,20}]]] (* Harvey P. Dale, Mar 25 2024 *)
Formula
As an infinite lower triangular matrix, (1, 3, 5, ...) in the main diagonal and (2, 4, 6, ...) in the subdiagonal; with the rest zeros.
From Stefano Spezia, Dec 21 2021: (Start)
T(n, k) = 2*n - 1 if n = k, T(n, k) = 2*(n - 1) if n - k = 1, otherwise T(n, k) = 0.
G.f.: x*y*(1 + x*(2 + y))/(1 - x*y)^2. (End)
Extensions
More terms from Stefano Spezia, Dec 21 2021
Comments