Original entry on oeis.org
1, 3, 3, 5, 10, 5, 7, 21, 21, 7, 9, 36, 54, 36, 9, 11, 55, 110, 110, 55, 11, 13, 78, 195, 260, 195, 78, 13, 15, 105, 315, 525, 525, 315, 105, 15, 17, 136, 476, 952, 1190, 952, 476, 136, 17, 19, 171, 684, 1596, 2394, 2394, 1596, 684, 171, 19
Offset: 0
First few rows of the triangle:
1;
3, 3;
5, 10, 5;
7, 21, 21, 7;
9, 36, 54, 36, 9;
11, 55, 110, 110, 55, 11;
13, 78, 195, 260, 195, 78, 13;
15, 105, 315, 525, 525, 315, 105, 15;
...
Row 3 = (7, 21, 21, 7) = 7 * (1, 3, 3, 1).
A033951
Write 1,2,... in a clockwise spiral; sequence gives numbers on positive x axis.
Original entry on oeis.org
1, 8, 23, 46, 77, 116, 163, 218, 281, 352, 431, 518, 613, 716, 827, 946, 1073, 1208, 1351, 1502, 1661, 1828, 2003, 2186, 2377, 2576, 2783, 2998, 3221, 3452, 3691, 3938, 4193, 4456, 4727, 5006, 5293, 5588, 5891, 6202, 6521, 6848, 7183, 7526, 7877, 8236, 8603, 8978
Offset: 0
Olivier Gorin (gorin(AT)roazhon.inra.fr)
Spiral begins:
.
65--66--67--68--69--70--71--72--73
| |
64 37--38--39--40--41--42--43 74
| | | |
63 36 17--18--19--20--21 44 75
| | | | | |
62 35 16 5---6---7 22 45 76
| | | | | | | |
61 34 15 4 1 8 23 46 77
| | | | | | | |
60 33 14 3---2 9 24 47
| | | | | |
59 32 13--12--11--10 25 48
| | | |
58 31--30--29--28--27--26 49
| |
57--56--55--54--53--52--51--50
From _Aaron David Fairbanks_, Mar 06 2025: (Start)
Illustration of initial terms:
o o o o
o o o o o o o o o
o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o o o o o o o o
o o o o o o o o o o o o o o o
o o o o o o o o o
o o o o
1 8 23 46
(End)
Sequences from spirals:
A001107,
A002939,
A007742,
A033951,
A033952,
A033953,
A033954,
A033989,
A033990,
A033991,
A002943,
A033996,
A033988.
-
A033951:=n->4*n^2 + 3*n + 1: seq(A033951(n), n=0..100); # Wesley Ivan Hurt, Feb 11 2017
-
lst={};Do[p=4*n^2+3*n+1;AppendTo[lst, p], {n, 1, 6!}];lst (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
LinearRecurrence[{3,-3,1},{1,8,23},60] (* Harvey P. Dale, Feb 07 2015 *)
CoefficientList[Series[(1 + 5 x + 2 x^2)/(1 - x)^3, {x, 0, 45}], x] (* Michael De Vlieger, Feb 12 2017 *)
-
a(n)=4*n^2+3*n+1
-
[4*n**2 + 3*n + 1 for n in range(46)] # Michael S. Branicky, Jan 08 2021
Showing 1-2 of 2 results.
Comments