A132925 a(n) = 2^n - 1 + n*(n-1)/2.
1, 4, 10, 21, 41, 78, 148, 283, 547, 1068, 2102, 4161, 8269, 16474, 32872, 65655, 131207, 262296, 524458, 1048765, 2097361, 4194534, 8388860, 16777491, 33554731, 67109188, 134218078, 268435833, 536871317, 1073742258, 2147484112
Offset: 1
Examples
a(4) = 21 = sum of row 4 terms of triangle A132924: (4 + 4 + 5 + 8). a(4) = 21 = (1, 3, 3, 1) dot (1, 3, 3, 2) = (1 + 9 + 9 + 2).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (5,-9,7,-2).
Programs
-
Magma
[2^n - 1 + n*(n-1)/2: n in [1..40]]; // Vincenzo Librandi, Jun 21 2011
-
Maple
A132925 := proc(n) 2^n-1+n*(n-1)/2 ; end proc; # R. J. Mathar, Oct 23 2009
-
Mathematica
Table[2^n-1+n (n-1)/2,{n,40}] (* or *) LinearRecurrence[{5,-9,7,-2},{1,4,10,21},40] (* Harvey P. Dale, Jun 19 2011 *)
-
PARI
a(n)=2^n+binomial(n,2)-1 \\ Charles R Greathouse IV, Jun 20 2011
Formula
Binomial transform of [1, 3, 3, 2, 2, 2, 2, ...].
From Harvey P. Dale, Jun 19 2011: (Start)
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4); a(1)=1, a(2)=4, a(3)=10, a(4)=21.
G.f.: -x*(x^2+x-1)/((x-1)^3*(2*x-1)). (End)
E.g.f.: exp(x)*(2*exp(x) + x^2 - 2)/2. - Stefano Spezia, Feb 01 2025
Comments