A132868 a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4), with initial values 1,3,7,20.
1, 3, 7, 20, 60, 182, 547, 1641, 4921, 14762, 44286, 132860, 398581, 1195743, 3587227, 10761680, 32285040, 96855122, 290565367, 871696101, 2615088301, 7845264902, 23535794706, 70607384120, 211822152361, 635466457083, 1906399371247, 5719198113740
Offset: 0
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-1,3).
Programs
-
Mathematica
LinearRecurrence[{3,0,-1,3},{1,3,7,20},50] (* Harvey P. Dale, Jan 21 2012 *)
Formula
4*a(n) = 3^(n+1) + A132951(n).
O.g.f.: (-1+2*x^2)/((3*x-1)*(x+1)*(x^2-x+1)) = -(3/4)/(3*x-1)-(1/12)/(x+1)+(1/3)*(x+1)/(x^2-x+1). - R. J. Mathar, Nov 28 2007
a(n) = (1/12)*(3^(n+2) - 4*cos((n+1)*Pi/3) + cos((n+1)*Pi) + 4*sqrt(3) * sin(((n+1)*Pi)/3) + I*sin((n+1)*Pi)). - Harvey P. Dale, Jan 21 2012
12*a(n) = -(-1)^n +3^(n+2) +4*A057079(n). - R. J. Mathar, Oct 03 2021
Comments