A132353 a(n) = 3*a(n-1) - a(n-3) + 3*a(n-4), starting with 1, 2, 6, 20.
1, 2, 6, 20, 61, 183, 547, 1640, 4920, 14762, 44287, 132861, 398581, 1195742, 3587226, 10761680, 32285041, 96855123, 290565367, 871696100, 2615088300, 7845264902, 23535794707, 70607384121, 211822152361, 635466457082
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,0,-1,3).
Crossrefs
Cf. A129339.
Programs
-
Magma
I:=[1,2,6,20]; [n le 4 select I[n] else 3*Self(n-1) - Self(n-3) + 3*Self(n-4): n in [1..30]]; // G. C. Greubel, Jan 15 2018
-
Mathematica
LinearRecurrence[{3, 0, -1, 3}, {1, 2, 6, 20}, 50] (* G. C. Greubel, Jan 15 2018 *) nxt[{a_,b_,c_,d_}]:={b,c,d,3d-b+3a}; NestList[nxt,{1,2,6,20},50][[;;,1]] (* Harvey P. Dale, Feb 17 2025 *)
-
PARI
x='x+O('x^30); Vec((1-x+3*x^3)/((1-3*x)*(1+x)*(x^2-x+1))) \\ G. C. Greubel, Jan 15 2018
Formula
Also a(n) - 3^(n+1) = hexaperiodic 1, -1, -3, -1, 1, 3; cf. A132951.
From R. J. Mathar, Apr 04 2008: (Start)
O.g.f.: (1-x+3*x^3)/((1-3*x)*(1+x)*(x^2-x+1)).
a(n) = -(-1)^n/12 + 3^(n+1)/4 + A057079(n+2)/3. (End)
Extensions
More terms from R. J. Mathar, Apr 04 2008
Comments