cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A132958 a(n) = n!*Sum_{d|n} (-1)^(d+1)/d!.

Original entry on oeis.org

1, 1, 7, 11, 121, 479, 5041, 18479, 423361, 1844639, 39916801, 298710719, 6227020801, 43606442879, 1536517382401, 9589093113599, 355687428096001, 4259374594675199, 121645100408832001, 1135353600039859199
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{d = Divisors@n}, Plus @@ (n!*(-1)^(d + 1)/d!)]; Array[f, 19] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
    Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[(-x)^k/(k!*(x^k - 1)), {k, 25}], {x, 0, 20}], x]] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
    Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[1 - Exp[ -x^k], {k, 25}], {x, 0, 20}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (-1)^(d+1)/d!); \\ Michel Marcus, Sep 29 2017

Formula

E.g.f.: Sum_{k>0} (-x)^k/(k!*(x^k-1)) or Sum_{k>0}(1-exp(-x^k)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007

A293211 Triangle T(n,k) is the number of permutations on n elements with at least one k-cycle for 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 4, 3, 2, 15, 9, 8, 6, 76, 45, 40, 30, 24, 455, 285, 200, 180, 144, 120, 3186, 1995, 1400, 1260, 1008, 840, 720, 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040, 229384, 142695, 103040, 79380, 72576, 60480, 51840, 45360, 40320, 2293839, 1427895, 1030400, 793800, 653184, 604800, 518400, 453600, 403200, 362880
Offset: 1

Views

Author

Dennis P. Walsh, Oct 02 2017

Keywords

Comments

T(n,k) is equivalent to n! minus the number of permutations on n elements with zero k-cycles (sequence A122974).

Examples

			T(n,k) (the first 8 rows):
:     1;
:     1,     1;
:     4,     3,     2;
:    15,     9,     8,    6;
:    76,    45,    40,   30,   24;
:   455,   285,   200,  180,  144,  120;
:  3186,  1995,  1400, 1260, 1008,  840,  720;
: 25487, 15855, 11200, 8820, 8064, 6720, 5760, 5040;
  ...
T(4,3)=8 since there are exactly 8 permutations on {1,2,3,4} with at least one 3-cycle: (1)(234), (1)(243), (2)(134), (2)(143), (3)(124), (3)(142), (4)(123), and (4)(132).
		

Crossrefs

Row sums give A132961.
T(n,n) gives A000142(n-1) for n>0.
T(2n,n) gives A052145.

Programs

  • Maple
    T:=(n,k)->n!*sum((-1)^(j+1)*(1/k)^j/j!,j=1..floor(n/k)); seq(seq(T(n,k),k=1..n),n=1..10);
  • Mathematica
    Table[n!*Sum[(-1)^(j + 1)*(1/k)^j/j!, {j, Floor[n/k]}], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Oct 02 2017 *)

Formula

T(n,k) = n! * Sum_{j=1..floor(n/k)} (-1)^(j+1)*(1/k)^j/j!.
T(n,k) = n! - A122974(n,k).
E.g.f. of column k: (1-exp(-x^k/k))/(1-x). - Alois P. Heinz, Oct 11 2017

A132960 a(n) = n!*Sum_{d|n} (-1)^(d+1)/(d!*(n/d)^d).

Original entry on oeis.org

1, 0, 3, 2, 25, 94, 721, 3674, 42561, 291248, 3628801, 34254604, 479001601, 5337581534, 88966701825, 1140807642974, 20922789888001, 321094542593824, 6402373705728001, 109338195253235948, 2457732174030848001
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[ Range[0, 22]! CoefficientList[ Series[ - Sum[ Exp[ -x^k/k], {k, 25}], {x, 0, 22}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (-1)^(d+1)/(d!*(n/d)^d)); \\ Michel Marcus, Sep 29 2017

Formula

E.g.f.: Sum_{k>0}(1-exp(-x^k/k)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007

A132962 a(n) = n!*Sum_{d|n} (-1)^(d+1)/(d!*(n/d)!^d).

Original entry on oeis.org

1, 0, 2, -3, 2, 5, 2, -140, 282, 819, 2, -20482, 2, 133419, 1527528, -4661085, 2, -153296429, 2, 1402482796, 36278688162, 13748957859, 2, -14081800718427, 5194672859378, 7905848380325, 2977584150505252, 12956452725792600, 2, -1314647260913859151
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[ Range[0, 30]! CoefficientList[ Series[ Sum[1 - Exp[ -x^k/k! ], {k, 30}], {x, 0, 30}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
  • PARI
    a(n) = n!*sumdiv(n, d, (-1)^(d+1)/(d!*(n/d)!^d)); \\ Michel Marcus, Sep 29 2017

Formula

E.g.f.: Sum_{k>0}(1-exp(-x^k/k!)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007

A132959 Total number of all distinct list sizes in all partitions of [n] into lists, cf. A000262.

Original entry on oeis.org

1, 3, 19, 109, 881, 7621, 77785, 854225, 10750465, 143737381, 2121714761, 33426065905, 568250246305, 10242445089605, 197388381934801, 4003553262384961, 86010508861504385, 1939950117886565125
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Mathematica
    Rest[ Range[0, 20]! CoefficientList[ Series[ Exp[x/(1 - x)] Sum[(-x)^k/(k!*(x^k - 1)), {k, 25}], {x, 0, 20}], x]] (* Robert G. Wilson v, Sep 13 2007 *)

Formula

E.g.f.: exp(x/(1-x))*Sum_{k>0}(1-exp(-x^k)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007

A132963 Total number of distinct block sizes in all partitions of [n].

Original entry on oeis.org

1, 2, 8, 25, 102, 439, 2067, 10406, 56754, 328257, 2015818, 13067366, 89192170, 638321285, 4779442602, 37332643831, 303635437532, 2565592977205, 22483754207839, 204013083946460, 1913880812797792, 18536832515581167, 185130415180288134, 1904280138346826637
Offset: 1

Views

Author

Vladeta Jovovic, Sep 06 2007

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0, c,
          `if`(i<1, 0, add(b(n-j*i, i-1, c+signum(j))*
          combinat[multinomial](n, n-i*j, i$j)/j!, j=0..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=1..30);  # Alois P. Heinz, Jan 06 2022
  • Mathematica
    Rest[ Range[0, 23]! CoefficientList[ Series[ Exp[ Exp[x] - 1] Sum[1 - Exp[ -x^k/k! ], {k, 30}], {x, 0, 23}], x]] (* Robert G. Wilson v, Sep 13 2007 *)

Formula

E.g.f.: exp(exp(x)-1)*Sum_{k>0} (1-exp(-x^k/k!)).

Extensions

More terms from Robert G. Wilson v, Sep 13 2007
Showing 1-6 of 6 results.