A132958
a(n) = n!*Sum_{d|n} (-1)^(d+1)/d!.
Original entry on oeis.org
1, 1, 7, 11, 121, 479, 5041, 18479, 423361, 1844639, 39916801, 298710719, 6227020801, 43606442879, 1536517382401, 9589093113599, 355687428096001, 4259374594675199, 121645100408832001, 1135353600039859199
Offset: 1
-
f[n_] := Block[{d = Divisors@n}, Plus @@ (n!*(-1)^(d + 1)/d!)]; Array[f, 19] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[(-x)^k/(k!*(x^k - 1)), {k, 25}], {x, 0, 20}], x]] (* or *) (* Robert G. Wilson v, Sep 13 2007 *)
Rest[ Range[0, 20]! CoefficientList[ Series[ Sum[1 - Exp[ -x^k], {k, 25}], {x, 0, 20}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
-
a(n) = n!*sumdiv(n, d, (-1)^(d+1)/d!); \\ Michel Marcus, Sep 29 2017
A132960
a(n) = n!*Sum_{d|n} (-1)^(d+1)/(d!*(n/d)^d).
Original entry on oeis.org
1, 0, 3, 2, 25, 94, 721, 3674, 42561, 291248, 3628801, 34254604, 479001601, 5337581534, 88966701825, 1140807642974, 20922789888001, 321094542593824, 6402373705728001, 109338195253235948, 2457732174030848001
Offset: 1
-
Rest[ Range[0, 22]! CoefficientList[ Series[ - Sum[ Exp[ -x^k/k], {k, 25}], {x, 0, 22}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
-
a(n) = n!*sumdiv(n, d, (-1)^(d+1)/(d!*(n/d)^d)); \\ Michel Marcus, Sep 29 2017
A132962
a(n) = n!*Sum_{d|n} (-1)^(d+1)/(d!*(n/d)!^d).
Original entry on oeis.org
1, 0, 2, -3, 2, 5, 2, -140, 282, 819, 2, -20482, 2, 133419, 1527528, -4661085, 2, -153296429, 2, 1402482796, 36278688162, 13748957859, 2, -14081800718427, 5194672859378, 7905848380325, 2977584150505252, 12956452725792600, 2, -1314647260913859151
Offset: 1
-
Rest[ Range[0, 30]! CoefficientList[ Series[ Sum[1 - Exp[ -x^k/k! ], {k, 30}], {x, 0, 30}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
-
a(n) = n!*sumdiv(n, d, (-1)^(d+1)/(d!*(n/d)!^d)); \\ Michel Marcus, Sep 29 2017
A132961
Total number of all distinct cycle sizes in all permutations of [n].
Original entry on oeis.org
1, 2, 9, 38, 215, 1384, 10409, 86946, 825075, 8541998, 97590779, 1205343952, 16148472977, 231416203212, 3560209750005, 58104163643054, 1008693571819919, 18477578835352366, 357476371577422955, 7258865626801695048, 154893910336866444009, 3454112338490001478772
Offset: 1
-
with(combinat):
b:= proc(n, i) option remember; `if`(n=0, [1, 0], `if`(i<1, 0,
add(multinomial(n, n-i*j, i$j)/j!*(i-1)!^j*(p-> p+
[0, p[1]*`if`(j>0, 1, 0)])(b(n-i*j, i-1)), j=0..n/i)))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=1..30); # Alois P. Heinz, Oct 21 2015
-
Rest[ Range[0, 22]! CoefficientList[ Series[1/(1 - x) Sum[1 - Exp[ -x^k/k], {k, 25}], {x, 0, 22}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
A132963
Total number of distinct block sizes in all partitions of [n].
Original entry on oeis.org
1, 2, 8, 25, 102, 439, 2067, 10406, 56754, 328257, 2015818, 13067366, 89192170, 638321285, 4779442602, 37332643831, 303635437532, 2565592977205, 22483754207839, 204013083946460, 1913880812797792, 18536832515581167, 185130415180288134, 1904280138346826637
Offset: 1
-
b:= proc(n, i, c) option remember; `if`(n=0, c,
`if`(i<1, 0, add(b(n-j*i, i-1, c+signum(j))*
combinat[multinomial](n, n-i*j, i$j)/j!, j=0..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=1..30); # Alois P. Heinz, Jan 06 2022
-
Rest[ Range[0, 23]! CoefficientList[ Series[ Exp[ Exp[x] - 1] Sum[1 - Exp[ -x^k/k! ], {k, 30}], {x, 0, 23}], x]] (* Robert G. Wilson v, Sep 13 2007 *)
A182928
Triangular array read by rows: [T(n,k),k=1..tau(n)] = [-n!/(d*(-(n/d)!)^d), d|n].
Original entry on oeis.org
1, 1, -1, 1, 2, 1, -3, -6, 1, 24, 1, -10, 30, -120, 1, 720, 1, -35, -630, -5040, 1, 560, 40320, 1, -126, 22680, -362880, 1, 3628800, 1, -462, 11550, -92400, -1247400, -39916800, 1, 479001600, 1, -1716, 97297200, -6227020800
Offset: 1
The array starts with
[1] 1,
[2] 1, -1,
[3] 1, 2,
[4] 1, -3, -6,
[5] 1, 24,
[6] 1, -10, 30, -120,
[7] 1, 720,
[8] 1, -35, -630, -5040,
[9] 1, 560, 40320,
-
A182928_row := proc(n) local d;
seq(-n!/(d*(-(n/d)!)^d), d = numtheory[divisors](n)) end:
-
row[n_] := Table[ -n!/(d*(-(n/d)!)^d), {d, Divisors[n]}]; Table[row[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
Showing 1-6 of 6 results.
Comments