cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A133029 Divisors of 1729, the 2nd taxicab number (also called the Hardy-Ramanujan number).

Original entry on oeis.org

1, 7, 13, 19, 91, 133, 247, 1729
Offset: 1

Views

Author

Omar E. Pol, Oct 23 2007, Nov 07 2007

Keywords

Comments

Note that 19 * 91 = 1729. For products of n-th prime and n-th prime written backwards, see A133019.

Examples

			7 * 247 = 1729 and 13 * 133 = 1729.
		

Crossrefs

Cf. A000005, A018487. Taxicab numbers: A011541.

Programs

A133022 Product of n-th Fibonacci number and n-th Fibonacci number written backwards.

Original entry on oeis.org

0, 1, 1, 4, 9, 25, 64, 403, 252, 1462, 3025, 8722, 63504, 77356, 291421, 9760, 778743, 12697747, 12537568, 7584334, 38398140, 710406346, 208476181, 2168819074, 4004525952, 3905576425, 47722137553, 160019976838, 37728297243, 474332543035, 33479625520
Offset: 0

Views

Author

Omar E. Pol, Nov 07 2007

Keywords

Examples

			403 = 13*31.
		

Crossrefs

Programs

  • Maple
    a:= n-> (f-> (s-> f*parse(cat(s[-i]$i=1..length(s))))(
              ""||f))(((<<0|1>, <1|1>>^n)[1, 2])):
    seq(a(n), n=0..30);  # Alois P. Heinz, Apr 06 2018
  • Mathematica
    #*FromDigits[Reverse[IntegerDigits[#]]]&/@Fibonacci[Range[0,40]] (* Harvey P. Dale, Oct 12 2012 *)

Formula

a(n) = A000045(n) * A004091(n).

Extensions

Corrected and extended by Harvey P. Dale, Oct 12 2012

A135625 Product of n-th Mersenne prime and n-th Mersenne prime written backwards.

Original entry on oeis.org

9, 49, 403, 91567, 15710338, 22299240301, 410215255975, 16028490260973271564, 3675428737957071376458418697257441432, 68870283995769119153444423083582483731047501259451576, 117132053040627211700855551462169332419627937481594387132326105147, 123777964225587033644972609912682600644825032245501533642224841942296666013617
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2008

Keywords

Examples

			a(3) = 403 because the 3rd Mersenne prime is 31 and 31*13 = 403.
		

Crossrefs

Programs

  • Maple
    read transforms : A000043 := proc(n) op(n,[2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937]) ; end: A000668 := proc(n) 2^A000043(n)-1 ; end: A135623 := proc(n) digrev(A000668(n)) ; end: A135625 := proc(n) A000668(n)*A135623(n) ; end: for n from 1 to 13 do printf("%d, ",A135625 (n) ) ; od: # R. J. Mathar, Feb 28 2008
  • Mathematica
    # FromDigits[Reverse[IntegerDigits[#]]]&/@Select[2^Prime[Range[100]]-1, PrimeQ] (* Harvey P. Dale, Mar 26 2012 *)

Formula

a(n) = A000668(n)*A135623(n).

Extensions

More terms from R. J. Mathar, Feb 28 2008

A138129 Multiples of 1729, the Hardy-Ramanujan number.

Original entry on oeis.org

0, 1729, 3458, 5187, 6916, 8645, 10374, 12103, 13832, 15561, 17290, 19019, 20748, 22477, 24206, 25935, 27664, 29393, 31122, 32851, 34580, 36309, 38038, 39767, 41496, 43225, 44954, 46683, 48412, 50141, 51870, 53599, 55328, 57057, 58786, 60515, 62244, 63973, 65702, 67431
Offset: 0

Views

Author

Omar E. Pol, Mar 09 2008

Keywords

Comments

About 1729: "No," said Ramanujan, "It is a very interesting number..."

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, p. 153.

Crossrefs

Programs

Formula

a(n) = 1729*n.
From Elmo R. Oliveira, Jun 23 2025: (Start)
G.f.: 1729*x/(1-x)^2.
E.g.f.: 1729*x*exp(x).
a(n) = 91*A008601(n).
a(n) = 2*a(n-1) - a(n-2). (End)

Extensions

More terms from Elmo R. Oliveira, Jun 23 2025

A138130 Powers of 1729, the Hardy-Ramanujan number.

Original entry on oeis.org

1, 1729, 2989441, 5168743489, 8936757492481, 15451653704499649, 26715909255079893121, 46191807102033135206209, 79865634479415290771535361, 138087682014909037743984639169, 238753602203777726259349441123201, 412804978210331688702415183702014529
Offset: 0

Views

Author

Omar E. Pol, Mar 09 2008

Keywords

Comments

About 1729: "No," said Ramanujan, "It is a very interesting number..."

References

  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1997, p. 153.

Crossrefs

Programs

Formula

a(n) = 1729^n.
From Chai Wah Wu, Jan 19 2021: (Start)
a(n) = 1729*a(n-1) for n > 0.
G.f.: 1/(1 - 1729*x). (End)
From Elmo R. Oliveira, Jun 23 2025: (Start)
E.g.f.: exp(1729*x).
a(n) = A000420(n)*A001022(n)*A001029(n). (End)

A302092 Product of n-th Bell number and n-th Bell number written backwards.

Original entry on oeis.org

1, 1, 4, 25, 765, 1300, 61306, 682306, 1713960, 1567246464, 67208788225, 51487177320, 33511259427028, 2030336608089664, 42761083701194302, 7549007599307190895, 776831192562116876947, 3388911887796350381712, 649070202541887765091474, 43774861324581222789850945
Offset: 0

Views

Author

Vincenzo Librandi, Apr 01 2018

Keywords

Comments

Conjecture: in this sequence only two semiprimes (4,25).

Examples

			a(4) = 765 because Bell(4) = 15 and 15*51 = 765.
s(5) = 1300 because Bell(5) = 52 and 52*25 = 1300.
		

Crossrefs

Programs

  • Magma
    [Bell(n)*Seqint(Reverse(Intseq(Bell(n)))): n in [0..30]];
    
  • Maple
    b:= proc(n) option remember; `if`(n=0, 1,
          add(b(n-j)*binomial(n-1, j-1), j=1..n))
        end:
    a:= n-> b(n)*(s-> parse(cat(seq(s[-i], i=1..length(s)))))(""||(b(n))):
    seq(a(n), n=0..25);  # Alois P. Heinz, Apr 26 2018
  • Mathematica
    BellB[#] FromDigits[Reverse[IntegerDigits[BellB[#]]]]&/@Range[0, 50]
    # IntegerReverse[#]&/@BellB[Range[0,20]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Dec 29 2019 *)
  • Perl
    use ntheory ":all"; sub Bell {vecsum(map{stirling($[0],$,2)} 0..$[0])}  for (0..30) { my $b=Bell($); print "$ ",vecprod($b,scalar(reverse($b))),"\n" } # _Dana Jacobsen, Mar 04 2019

Formula

a(n) = A000110(n)*A004098(n).

A135626 Product of n-th perfect number and n-th perfect number written backwards.

Original entry on oeis.org

36, 2296, 344224, 66795904, 2123921902809088, 55917383475391234048, 113139095670780538912768, 18936964716073275231635792697644548096, 17844842231875188005737387074890396164121166838056340379818586412691750912
Offset: 1

Views

Author

Omar E. Pol, Feb 20 2008

Keywords

Examples

			a(2)=2296 because the second perfect number is 28 and 28*82=2296.
		

Crossrefs

Programs

  • Mathematica
    # IntegerReverse[#]&/@PerfectNumber[Range[10]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Nov 29 2020 *)

Formula

a(n) = A000396(n)*A135624(n).

Extensions

More terms from R. J. Mathar, Jun 24 2009
Showing 1-7 of 7 results.