A133048 Powerback(n): reverse the decimal expansion of n, drop any leading zeros, then apply the powertrain map of A133500 to the resulting number.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 2, 1, 4, 9, 16, 25, 36, 49, 64, 81, 3, 1, 8, 27, 64, 125, 216, 343, 512, 729, 4, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 5, 1, 32, 243, 1024, 3125, 7776, 16807, 32768, 59049, 6, 1, 64, 729, 4096, 15625, 46656, 117649
Offset: 0
Examples
E.g. 240 -> (0)42 -> 4^2 = 16; 12345 -> 54321 -> 5^4*3^2*1 = 5625.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Haskell
a133048 0 = 0 a133048 n = train $ dropWhile (== 0) $ a031298_row n where train [] = 1 train [x] = x train (u:v:ws) = u ^ v * (train ws) -- Reinhard Zumkeller, May 27 2013
-
Maple
powerback:=proc(n) local a,i,j,t1,t2,t3; if n = 0 then RETURN(0); fi; t1:=convert(n, base, 10); t2:=nops(t1); for i from 1 to t2 do if t1[i] > 0 then break; fi; od: a:=1; t3:=t2-i+1; for j from 0 to floor(t3/2)-1 do a := a*t1[i+2*j]^t1[i+2*j+1]; od: if t3 mod 2 = 1 then a:=a*t1[t2]; fi; RETURN(a); end;
-
Mathematica
ptm[n_]:=Module[{idn=IntegerDigits[IntegerReverse[n]]},If[ EvenQ[ Length[idn]],Times@@ (#[[1]]^#[[2]]&/@Partition[idn,2]),(Times@@(#[[1]]^#[[2]]&/@Partition[ Most[ idn],2]))Last[idn]]];Array[ptm,70,0] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 05 2020 *)
Comments