A131571
Fixed points of the map m -> powerback(m) (see A133048 for definition).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 25, 107495424
Offset: 1
Under the powerback map of A133048, 25 -> 5^2 = 25, 107495424 -> 4^2*4^5*9^4*7^0*1 = 107495424.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 16, 25, 36, 49, 64, 81, 125, 216, 343, 512, 729, 1296, 2401, 4096, 6561, 7776, 16807, 32768, 59049, 117649, 262144, 531441, 823543, 2097152, 4782969, 5764801, 16777216, 43046721, 134217728, 387420489, 774840978, 1162261467, 1549681956
Offset: 1
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 24, 25, 26, 27, 28, 29, 35, 36, 37, 38, 39, 46, 47, 48, 49, 56, 57, 58, 59, 67, 68, 69, 77, 78, 79, 87, 88, 89, 98, 99, 299, 399, 499, 599, 699, 799, 899, 999, 2499, 2599, 2699, 2799, 2899, 2999, 3599, 3699, 3799, 3899, 3999, 4699, 4799, 4899
Offset: 1
A133144
Start with n and repeatedly apply the powerback map of A133048. Sequence gives number of steps to the point where the next number would be one that has appeared before.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 4, 6, 3, 2, 1, 1, 1, 7, 3, 2, 3, 6, 3, 7, 1, 1, 2, 2, 4, 3, 3, 3, 2, 5, 1, 1, 2, 5, 2, 2, 6, 5, 4, 2, 1, 1, 3, 7, 2, 4, 4, 5, 4, 5, 1, 1, 4, 4, 5, 2, 3, 6, 4, 3, 1, 1, 4, 5, 3, 5, 5, 3, 4, 5, 1, 1, 3, 9, 4, 6, 2, 2, 5, 3
Offset: 0
n, a(n), trajectory
22, 1, [22, 4]
23, 1, [23, 9]
24, 2, [24, 16, 6]
25, 0, [25]
26, 4, [26, 36, 216, 12, 2]
27, 6, [27, 49, 6561, 15625, 194400, 2304, 9]
28, 3, [28, 64, 4096, 0]
29, 2, [29, 81, 1]
30, 1, [30, 3]
31, 1, [31, 1]
32, 1, [32, 8]
33, 7, [33, 27, 49, 6561, 15625, 194400, 2304, 9]
34, 3, [34, 64, 4096, 0]
35, 2, [35, 125, 25]
36, 3, [36, 216, 12, 2]
37, 6, [37, 343, 243, 162, 64, 4096, 0]
38, 3, [38, 512, 10, 1]
39, 7, [39, 729, 567, 588245, 5242880000, 8589934592, 105911076180375000000000, 0]
A003001
Smallest number of multiplicative persistence n.
Original entry on oeis.org
0, 10, 25, 39, 77, 679, 6788, 68889, 2677889, 26888999, 3778888999, 277777788888899
Offset: 0
77 -> 49 -> 36 -> 18 -> 8 has persistence 4.
- Alex Bellos, Here's Looking at Euclid: A Surprising Excursion Through the Astonishing World of Math, Free Press, 2010, page 176.
- M. Gardner, Fractal Music, Hypercards and More, Freeman, NY, 1991, pp. 170, 186.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section F25.
- C. A. Pickover, Wonders of Numbers, "Persistence", Chapter 28, Oxford University Press NY 2001.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 66.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 35.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 78.
- Edson de Faria and Charles Tresser, On Sloane's persistence problem, arXiv preprint arXiv:1307.1188 [math.DS], 2013.
- Edson de Faria and Charles Tresser, On Sloane's persistence problem, Experimental Math., 23 (No. 4, 2014), 363-382.
- Mark R. Diamond, Multiplicative persistence base 10: some new null results, 2011.
- Shyam Sunder Gupta, Digital Root Wonders, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 1, 1-28.
- Brady Haran and Matt Parker, What's special about 277777788888899?, Numberphile video, 2019.
- T. Lamont-Smith, Multiplicative Persistence and Absolute Multiplicative Persistence, J. Int. Seq., Vol. 24 (2021), Article 21.6.7.
- Kevin McElwee, An algorithm for multiplicative persistence research, Jul 13 2019.
- S. Perez and R. Styer, Persistence: A Digit Problem.
- W. Schneider, The Persistence of a Number.
- N. J. A. Sloane, The persistence of a number, J. Recreational Math., 6 (1973), 97-98.
- Eric Weisstein's World of Mathematics, Multiplicative Persistence.
- Wikipedia, Persistence of a number.
- Susan Worst, Multiplicative persistence of base four numbers. [Scanned copy of manuscript and correspondence, May 1980]
-
lst = {}; n = 0; Do[While[True, k = n; c = 0; While[k > 9, k = Times @@ IntegerDigits[k]; c++]; If[c == l, Break[]]; n++]; AppendTo[lst, n], {l, 0, 7}]; lst (* Arkadiusz Wesolowski, May 01 2012 *)
-
persistence(x)={my(y=digits(x),c=0);while(#y>1,y=digits(vecprod(y));c++);return(c)}
firstTermsA003001(U)={my(ans=vector(U),k=(U>1),z);while(k+1<=U,if(persistence(z)==k,ans[k++]=z);z++);return(ans)}
\\ Finds the first U terms (is slow); R. J. Cano, Sep 11 2016
A133500
The powertrain or power train map: Powertrain(n): if abcd... is the decimal expansion of a number n, then the powertrain of n is the number n' = a^b*c^d* ..., which ends in an exponent or a base according as the number of digits is even or odd. a(0) = 0 by convention.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1, 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 1, 6, 36, 216, 1296
Offset: 0
20 -> 2^0 = 1,
21 -> 2^1 = 2,
24 -> 2^4 = 16,
39 -> 3^9 = 19683,
623 -> 6^2*3 = 108,
etc.
- N. J. A. Sloane, Table of n, a(n) for n = 0..10000
- N. J. A. Sloane, Confessions of a Sequence Addict (AofA2017), slides of invited talk given at AofA 2017, Jun 19 2017, Princeton. Mentions this sequence.
- N. J. A. Sloane, Three (No, 8) Lovely Problems from the OEIS, Experimental Mathematics Seminar, Rutgers University, Oct 05 2017, Part I, Part 2, Slides. (Mentions this sequence)
Cf.
A075877,
A133501 (number of steps to reach fixed point),
A133502,
A135385 (the conjectured list of fixed points),
A135384 (numbers which converge to 2592). For records see
A133504,
A133505; for the fixed points that are reached when this map is iterated starting at n, see
A287877.
-
a133500 = train . reverse . a031298_row where
train [] = 1
train [x] = x
train (u:v:ws) = u ^ v * (train ws)
-- Reinhard Zumkeller, May 27 2013
-
powertrain:=proc(n) local a,i,n1,n2,t1,t2; n1:=abs(n); n2:=sign(n); t1:=convert(n1, base, 10); t2:=nops(t1); a:=1; for i from 0 to floor(t2/2)-1 do a := a*t1[t2-2*i]^t1[t2-2*i-1]; od: if t2 mod 2 = 1 then a:=a*t1[1]; fi; RETURN(n2*a); end; # N. J. A. Sloane, Dec 03 2007
-
ptm[n_]:=Module[{idn=IntegerDigits[n]},If[EvenQ[Length[idn]],Times@@( #[[1]]^ #[[2]] &/@Partition[idn,2]),(Times@@(#[[1]]^#[[2]] &/@ Partition[ Most[idn],2]))Last[idn]]]; Array[ptm,70,0] (* Harvey P. Dale, Jul 15 2019 *)
-
def A133500(n):
s = str(n)
l = len(s)
m = int(s[-1]) if l % 2 else 1
for i in range(0,l-1,2):
m *= int(s[i])**int(s[i+1])
return m # Chai Wah Wu, Jun 16 2017
A221221
Where powerbacks and powertrains coincide.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 22, 24, 33, 42, 44, 55, 66, 77, 88, 99, 101, 111, 112, 113, 114, 115, 116, 117, 118, 119, 121, 131, 141, 151, 161, 171, 181, 191, 202, 211, 212, 213, 214, 215, 216, 217, 218, 219, 222, 232, 242, 252, 262, 272, 282, 292
Offset: 1
Some non-palindromic terms:
a(11) = 10: A133500(10) = 1^0 = 1 = A133048(10) = A133048(1) = 1;
a(14) = 24: A133500(24) = 2^4 = 16 = A133048(24) = 4^2;
a(16) = 42: A133500(42) = 4^2 = 16 = A133048(42) = 2^4;
a(25) = 112: A133500(112) = 1^1 * 2 = 2 = A133048(112) = 2^1 * 1;
a(26) = 113: A133500(113) = 1^1 * 3 = 3 = A133048(113) = 3^1 * 1;
a(44) = 213: A133500(213) = 2^1 * 3 = 6 = A133048(213) = 3^1 * 2.
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 4, 16, 27, 16, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 4, 6, 8, 10, 12, 14, 16, 18, 8, 16, 32, 64, 128, 256, 512, 1024, 3, 3, 6, 9, 12, 15, 18, 21, 24, 27
Offset: 1
Showing 1-8 of 8 results.
Comments