A133061 a(n) = 5*p^5 - 3*p^3 - 2*p^2, where p = prime(n).
128, 1116, 15200, 82908, 801020, 1849536, 7083968, 12359196, 32144156, 102480896, 143054460, 346565088, 579070880, 734799996, 1146409148, 2090525216, 3573998396, 4222293120, 6749714268, 9020062940, 10364180256, 15383790396, 19693474076, 27918166496, 42933944448, 52547391200
Offset: 1
Examples
a(4)=82908 because the 4th prime is 7, 5*7^5=84035, 3*7^3=1029, 2*7^2=98 and we can write 84035-1029-98=82908.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[5*p^5-3*p^3-2*p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 15 2010
-
Maple
a:= n-> (p-> (5*p^3-3*p-2)*p^2)(ithprime(n)): seq(a(n), n=1..26); # Alois P. Heinz, Sep 23 2024
-
Mathematica
Table[(Prime[n])^2*(5*Prime[n]^3 - 3*Prime[n] - 2), {n, 1, 50}] (* G. C. Greubel, Oct 09 2017 *)
-
PARI
for(n=1,25, print1(5*prime(n)^5 - 3*prime(n)^3 - 2*prime(n)^2, ", ")) \\ G. C. Greubel, Oct 09 2017
Formula
a(n) = 5*(p(n))^5 - 3*(p(n))^3 - 2*(p(n))^2, where p(n)=A000040(n).
Extensions
More terms from Vincenzo Librandi, Dec 15 2010