cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133063 a(n) = 5*p^5 + 3*p^3 - 2*p^2, where p = prime(n).

Original entry on oeis.org

176, 1278, 15950, 84966, 809006, 1862718, 7113446, 12400350, 32217158, 102627230, 143233206, 346869006, 579484406, 735277038, 1147032086, 2091418478, 3575230670, 4223655006, 6751518846, 9022210406, 10366514358, 15386748630, 19696904798, 27922396310, 42939420486, 52553573006
Offset: 1

Views

Author

Omar E. Pol, Nov 05 2007

Keywords

Examples

			a(4)=84966 because the 4th prime is 7, 5*7^5=84035, 3*7^3=1029, 2*7^2=98 and we can write 84035+1029-98=84966.
		

Crossrefs

Cf. A000290, A000578, A000584, A045991, A133072. Prime numbers: A000040.

Programs

  • Magma
    [5*p^5+3*p^3-2*p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 15 2010
    
  • Maple
    a:= n-> (p-> (5*p^3+3*p-2)*p^2)(ithprime(n)):
    seq(a(n), n=1..26);  # Alois P. Heinz, Sep 23 2024
  • Mathematica
    Table[(Prime[n])^2*(5*Prime[n]^3 + 3*Prime[n] - 2), {n, 1, 50}] (* G. C. Greubel, Oct 09 2017 *)
  • PARI
    for(n=1,25, print1(5*prime(n)^5 + 3*prime(n)^3 - 2*prime(n)^2, ", ")) \\ G. C. Greubel, Oct 09 2017

Formula

a(n) = 5*(p(n))^5 + 3*(p(n))^3 - 2*(p(n))^2, where p(n)=A000040(n).

Extensions

More terms from Vincenzo Librandi, Dec 15 2010