A133063 a(n) = 5*p^5 + 3*p^3 - 2*p^2, where p = prime(n).
176, 1278, 15950, 84966, 809006, 1862718, 7113446, 12400350, 32217158, 102627230, 143233206, 346869006, 579484406, 735277038, 1147032086, 2091418478, 3575230670, 4223655006, 6751518846, 9022210406, 10366514358, 15386748630, 19696904798, 27922396310, 42939420486, 52553573006
Offset: 1
Examples
a(4)=84966 because the 4th prime is 7, 5*7^5=84035, 3*7^3=1029, 2*7^2=98 and we can write 84035+1029-98=84966.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[5*p^5+3*p^3-2*p^2: p in PrimesUpTo(200)]; // Vincenzo Librandi, Dec 15 2010
-
Maple
a:= n-> (p-> (5*p^3+3*p-2)*p^2)(ithprime(n)): seq(a(n), n=1..26); # Alois P. Heinz, Sep 23 2024
-
Mathematica
Table[(Prime[n])^2*(5*Prime[n]^3 + 3*Prime[n] - 2), {n, 1, 50}] (* G. C. Greubel, Oct 09 2017 *)
-
PARI
for(n=1,25, print1(5*prime(n)^5 + 3*prime(n)^3 - 2*prime(n)^2, ", ")) \\ G. C. Greubel, Oct 09 2017
Formula
a(n) = 5*(p(n))^5 + 3*(p(n))^3 - 2*(p(n))^2, where p(n)=A000040(n).
Extensions
More terms from Vincenzo Librandi, Dec 15 2010