cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133080 Interpolation operator: Triangle with an even number of zeros in each line followed by 1 or 2 ones.

Original entry on oeis.org

1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Sep 08 2007

Keywords

Comments

A133080 * [1,2,3,...] = A114753: (1, 3, 3, 7, 5, 11, 7, 15, ...).
Inverse of A133080: subdiagonal changes to (-1, 0, -1, 0, -1, ...); main diagonal unchanged.
A133080^(-1) * [1,2,3,...] = A093178: (1, 1, 3, 1, 5, 1, 7, 1, 9, ...).
In A133081, diagonal terms are switched with subdiagonal terms.

Examples

			First few rows of the triangle are:
  1;
  1, 1;
  0, 0, 1;
  0, 0, 1, 1;
  0, 0, 0, 0, 1;
  0, 0, 0, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Cf. A000034 (row sums), A114753, A093178, A133081.

Programs

  • Maple
    A133080 := proc(n,k)
        if n = k then
            1;
        elif  k=n-1 and type(n,even) then
            1;
        else
            0 ;
        end if;
    end proc: # R. J. Mathar, Jun 20 2015
  • Mathematica
    T[n_, k_] := If[k == n, 1, If[k == n - 1, (1 + (-1)^n)/2 , 0]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
  • PARI
    T(n, k) = if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0)); \\ Michel Marcus, Feb 13 2014
    
  • PARI
    firstrows(n) = {my(res = vector(binomial(n + 1, 2)), t=0); for(i=1, n, t+=i; res[t] = 1; if(i%2==0, res[t-1]=1)) ;res} \\ David A. Corneth, Oct 21 2017

Formula

Infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (1,0,1,0,1,...) in the subdiagonal.
Odd rows, (n-1) zeros followed by "1". Even rows, (n-2) zeros followed by "1, 1".
T(n,n)=1. T(n,k)=0 if 1 <= k < n-1. T(n,n-1)=1 if n even. T(n,n-1)=0 if n odd. - R. J. Mathar, Feb 14 2015