A133080 Interpolation operator: Triangle with an even number of zeros in each line followed by 1 or 2 ones.
1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 1
Examples
First few rows of the triangle are: 1; 1, 1; 0, 0, 1; 0, 0, 1, 1; 0, 0, 0, 0, 1; 0, 0, 0, 0, 1, 1; 0, 0, 0, 0, 0, 0, 1; ...
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Maple
A133080 := proc(n,k) if n = k then 1; elif k=n-1 and type(n,even) then 1; else 0 ; end if; end proc: # R. J. Mathar, Jun 20 2015
-
Mathematica
T[n_, k_] := If[k == n, 1, If[k == n - 1, (1 + (-1)^n)/2 , 0]]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] (* G. C. Greubel, Oct 21 2017 *)
-
PARI
T(n, k) = if (k==n, 1, if (k == (n-1), 1 - (n % 2), 0)); \\ Michel Marcus, Feb 13 2014
-
PARI
firstrows(n) = {my(res = vector(binomial(n + 1, 2)), t=0); for(i=1, n, t+=i; res[t] = 1; if(i%2==0, res[t-1]=1)) ;res} \\ David A. Corneth, Oct 21 2017
Formula
Infinite lower triangular matrix, (1,1,1,...) in the main diagonal and (1,0,1,0,1,...) in the subdiagonal.
Odd rows, (n-1) zeros followed by "1". Even rows, (n-2) zeros followed by "1, 1".
T(n,n)=1. T(n,k)=0 if 1 <= k < n-1. T(n,n-1)=1 if n even. T(n,n-1)=0 if n odd. - R. J. Mathar, Feb 14 2015
Comments