A133217 Indices of decagonal numbers (A001107) that are also triangular (A000217).
0, 1, 2, 20, 55, 667, 1856, 22646, 63037, 769285, 2141390, 26133032, 72744211, 887753791, 2471161772, 30157495850, 83946756025, 1024467105097, 2851718543066, 34801724077436, 96874483708207, 1182234151527715, 3290880727535960, 40161159427864862
Offset: 1
Keywords
Examples
The third number which is both decagonal (A001107) and triangular (A000217) is A133216(3)=10. As this is the second decagonal number, we have a(3) = 2.
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 34, -34, -1, 1).
Programs
-
Mathematica
LinearRecurrence[{1, 34, -34, -1, 1} , {0, 1, 2, 20, 55, 667}, 24] (* first term 0 corrected by Georg Fischer, Apr 02 2019 *)
Formula
For n>5, a(n) = 34*a(n-2) - a(n-4) - 12.
For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
For n>1, a(n) = 1/16 * ((2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3) - (2*sqrt(2) - (-1)^n)*(1 - sqrt(2))^(2*n - 3) + 6).
For n>1, a(n) = ceiling (1/16*(2*sqrt(2) + (-1)^n)*(1 + sqrt(2))^(2*n - 3)).
G.f.: ( 1 - 33*x^2 + 18*x^3 + 2*x^4 ) / ((1 - x ) * (1 - 6*x + x^2 ) * (1 + 6*x + x^2)).
lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).
Extensions
Entry revised by Max Alekseyev, Nov 06 2011
Comments