cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133218 Indices of triangular numbers (A000217) that are also decagonal (A001107).

Original entry on oeis.org

0, 1, 4, 55, 154, 1885, 5248, 64051, 178294, 2175865, 6056764, 73915375, 205751698, 2510946901, 6989500984, 85298279275, 237437281774, 2897630548465, 8065878079348, 98434140368551, 274002417416074, 3343863141982285, 9308016314067184, 113592912687029155
Offset: 1

Views

Author

Richard Choulet, Oct 11 2007; Ant King, Nov 04 2011

Keywords

Examples

			The third number which is both triangular (A000217) and decagonal (A001107) is A133216(3)=10. Since this is the fourth triangular number, we have a(3) = 4.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 34, -34, -1, 1 }, {0, 1, 4, 55, 154, 1885}, 24 ]

Formula

For n>5, a(n) = 34*a(n-2) - a(n-4) + 16.
For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
For n>1, a(n) = 1/8 * ((4 + sqrt(2)*(-1)^n)*(1+sqrt(2))^(2*n - 3) + (4 - sqrt(2)*(-1)^n)*(1-sqrt(2))^(2*n-3) - 4).
a(n) = floor(1/8 * (4 + sqrt(2)*(-1)^n)* (1+sqrt(2))^(2*n-3)).
G.f.: x^2*(2*x^4+3*x^3-17*x^2-3*x-1)/((x-1)*(x^2+6*x+1)*(x^2-6*x+1)).
lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).

Extensions

Entry revised by Max Alekseyev, Nov 06 2011