A133218 Indices of triangular numbers (A000217) that are also decagonal (A001107).
0, 1, 4, 55, 154, 1885, 5248, 64051, 178294, 2175865, 6056764, 73915375, 205751698, 2510946901, 6989500984, 85298279275, 237437281774, 2897630548465, 8065878079348, 98434140368551, 274002417416074, 3343863141982285, 9308016314067184, 113592912687029155
Offset: 1
Keywords
Examples
The third number which is both triangular (A000217) and decagonal (A001107) is A133216(3)=10. Since this is the fourth triangular number, we have a(3) = 4.
Links
- Index entries for linear recurrences with constant coefficients, signature (1, 34, -34, -1, 1).
Programs
-
Mathematica
LinearRecurrence[{1, 34, -34, -1, 1 }, {0, 1, 4, 55, 154, 1885}, 24 ]
Formula
For n>5, a(n) = 34*a(n-2) - a(n-4) + 16.
For n>6, a(n) = a(n-1) + 34*a(n-2) - 34*a(n-3) - a(n-4) + a(n-5).
For n>1, a(n) = 1/8 * ((4 + sqrt(2)*(-1)^n)*(1+sqrt(2))^(2*n - 3) + (4 - sqrt(2)*(-1)^n)*(1-sqrt(2))^(2*n-3) - 4).
a(n) = floor(1/8 * (4 + sqrt(2)*(-1)^n)* (1+sqrt(2))^(2*n-3)).
G.f.: x^2*(2*x^4+3*x^3-17*x^2-3*x-1)/((x-1)*(x^2+6*x+1)*(x^2-6*x+1)).
lim (n -> Infinity, a(2n+1)/a(2n)) = 1/7*(43 + 30*sqrt(2)).
lim (n -> Infinity, a(2n)/a(2n-1)) = 1/7*(11 + 6*sqrt(2)).
Extensions
Entry revised by Max Alekseyev, Nov 06 2011