A133221 A001147 with each term repeated.
1, 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945, 10395, 10395, 135135, 135135, 2027025, 2027025, 34459425, 34459425, 654729075, 654729075, 13749310575, 13749310575, 316234143225, 316234143225, 7905853580625, 7905853580625, 213458046676875, 213458046676875
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..800
Crossrefs
Appears in A161736. - Johannes W. Meijer, Jun 18 2009
Programs
-
Mathematica
f[x_] := E^(x^2/2) + Sqrt[Pi/2]*Erfi[x/Sqrt[2]]; CoefficientList[ Series[f[x], {x, 0, 29}], x]*Range[0, 29]! (* Jean-François Alcover, Sep 25 2012, after Sergei N. Gladkovskii *) Table[(n - 1 - Mod[n, 2])!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *) Table[((2 n + (-1)^n - 3)/2)!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
-
PARI
a(n) = my(k = (2*n + (-1)^n - 3)/2); prod(i=0, (k-1)\2, k - 2*i) \\ Iain Fox, Dec 31 2017
-
Sage
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) def A133221(n): return Gauss_factorial(n-1, 2) [A133221(n) for n in (0..29)] # Peter Luschny, Oct 01 2012
Formula
E.g.f.: x*U(0) where U(k)= 1 + (2*k+1)/(x - x^4/(x^3 + (2*k+2)*(2*k+3)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 1+x*G(0), where G(k)= 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
a(n) = (2*floor(n/2)-1)!! = (n-1-(n mod 2))!!. - Alois P. Heinz, Sep 24 2024
Comments