cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133252 Partial sums of A006000.

Original entry on oeis.org

1, 5, 17, 45, 100, 196, 350, 582, 915, 1375, 1991, 2795, 3822, 5110, 6700, 8636, 10965, 13737, 17005, 20825, 25256, 30360, 36202, 42850, 50375, 58851, 68355, 78967, 90770, 103850, 118296, 134200, 151657, 170765, 191625, 214341, 239020, 265772
Offset: 0

Views

Author

Jonathan Vos Post, Dec 19 2007

Keywords

Comments

Prime for a(1) = 5, a(2) = 17, then never again?

Crossrefs

Cf. A006000.

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{1,5,17,45,100},40] (* Harvey P. Dale, Sep 15 2022 *)

Formula

a(n) = Sum_{i=0..n} A006000(i).
a(n) = Sum_{i=0..n} (i+1)*(i^2+i+2)/2.
a(n) = ((n^4+2*n^3+n^2)/4+(2*n^3+3*n^2+n)/3+(3*n^2+3*n)/2+2*n)/2+1.
G.f.: -(2*x^2 + 1) / (x-1)^5. - Colin Barker, Apr 28 2013
a(n) = (n+1)*(n+2)*(3*n^2+5*n+12)/24. - Alois P. Heinz, Apr 28 2013
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 21 2024