cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133410 Least prime p such that p-6*n is prime.

Original entry on oeis.org

2, 11, 17, 23, 29, 37, 41, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 107, 113, 127, 127, 131, 137, 149, 149, 157, 163, 167, 173, 179, 191, 191, 197, 211, 211, 223, 223, 227, 233, 239, 251, 251, 257, 263, 269, 277, 281, 293, 293, 307, 307, 311, 317, 331, 331, 337
Offset: 0

Views

Author

Pierre CAMI, Nov 25 2007

Keywords

Comments

If duplicates are omitted, this is the sequence of primes p such that all p - phi(k) - 1 are composite for 1 <= phi(k)-1 < p. - Michel Lagneau, Sep 14 2012
If duplicates are omitted, the given entries equal A025584 (p: p-2 is not a prime) except A025584 includes 3 (since 1 is not prime). - Harry G. Coin, Nov 29 2015

Crossrefs

Cf. A025584, A067829 (complement w.r.t. primes), A133387.

Programs

  • Maple
    Primes:= select(isprime,{2,seq(i,i=3..10^4,2)}):
    seq(min(Primes intersect map(`+`,Primes,6*n)),n=0..1000); # Robert Israel, Nov 30 2015
  • Mathematica
    a={};Do[i=6*n+1; While[Not[PrimeQ[i]&&PrimeQ[i-6*n]],i++ ];AppendTo[a,i],{n,0,60}]; a (* Stefan Steinerberger, Nov 26 2007 *)
    Table[Module[{p=NextPrime[6n]},While[!PrimeQ[p-6n],p=NextPrime[p]];p],{n,0,60}] (* Harvey P. Dale, Apr 07 2025 *)
  • PARI
    a(n) = {k=1; while(k, if(ispseudoprime(prime(k)-6*n), return(prime(k))); k++)} \\ Altug Alkan, Dec 04 2015

Extensions

More terms from Stefan Steinerberger, Nov 26 2007