cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133467 a(n) = a(n-1) + 6*a(n-2) for n >= 2, a(0)=1, a(1)=2.

Original entry on oeis.org

1, 2, 8, 20, 68, 188, 596, 1724, 5300, 15644, 47444, 141308, 425972, 1273820, 3829652, 11472572, 34450484, 103285916, 309988820, 929704316, 2789637236, 8367863132, 25105686548, 75312865340, 225946984628, 677824176668, 2033506084436, 6100451144444, 18301487651060
Offset: 0

Views

Author

Philippe Deléham, Jan 03 2008

Keywords

Comments

From Sean A. Irvine, Jun 07 2025: (Start)
The number of walks of length n starting at vertex 0 (or, by symmetry, vertex 2 or 3) in the graph K_{1,1,3}:
1---2
/|\ /
0 | X
\|/ \
4---3. (End)

Examples

			a(2)=8 because we have the walks 0-1-0, 0-1-2, 0-1-3, 0-1-4, 0-4-0, 0-4-1, 0-4-2, 0-4-3. - _Sean A. Irvine_, Jun 07 2025
		

Programs

  • Maple
    Digits := 50:
    for n from 0 to 40 do round(.8*3^n+.2*(-2)^n) end do;
    # Matt C. Anderson, Jul 18 2017
  • Mathematica
    LinearRecurrence[{1,6},{1,2},30] (* Harvey P. Dale, Apr 05 2014 *)
  • Sage
    from sage.combinat.sloane_functions import recur_gen2b; it = recur_gen2b(1,2,1,6, lambda n: 0); [next(it) for i in range(0,29)] # Zerinvary Lajos, Jul 03 2008

Formula

G.f.: (1+x)/((1+2*x)*(1-3*x)).
a(n) = Sum_{k=0..n+1} A122950(n+1,k)*5^(n+1-k). - Philippe Deléham, Jan 08 2008
a(n) = (4 * 3^n + (-2)^n) / 5. - Werner Schulte, Dec 18 2024