A133485 Integers k such that the polynomial x^(2k+2) + x + 1 is primitive and irreducible over GF(2).
0, 1, 2, 10, 29, 265, 449, 682
Offset: 1
Programs
-
Maple
select(n -> (Irreduc(x^(2*n+2)+x+1) mod 2) and (Primitive(x^(2*n+2)+x+1) mod 2), [$0..500]); # Robert Israel, Aug 17 2015
-
PARI
polisprimitive(poli)=np = 2^poldegree(poli)-1; if (type((x^np-1)/poli) != "t_POL", return (0)); forstep(k=np-1, 1, -1, if (type((x^k-1)/poli) == "t_POL", return (0));); return(1); lista(nn) = {for (n=0, nn, poli = Mod(1,2)*(x^(2*n+2)+x+1); if (polisirreducible(poli) && polisprimitive(poli), print1(n, ", ")););} \\ Michel Marcus, May 27 2013
-
Sage
def is_primitive(p): d = 2^(p.degree())-1 if not p.divides(x^d-1): return False for k in (d//q for q in d.prime_factors()): if p.divides(x^k-1): return False return True P.
= GF(2)[] for n in range(1,1000): p = x^(2*n+2)+x+1 if p.is_irreducible() and is_primitive(p): print(n) # Modification of the A002475 Script by Ruperto Corso # Manfred Scheucher, Aug 17 2015
Extensions
a(2)=1 inserted by Michel Marcus, May 29 2013
Comments