A133514 Biquadrateful (i.e., not biquadrate-free) palindromes.
272, 464, 656, 848, 2112, 2992, 4224, 6336, 8448, 14641, 21312, 21712, 23232, 23632, 25152, 25552, 25952, 27072, 27472, 27872, 29392, 29792, 31213, 40304, 40704, 42224, 42624, 44144, 44544, 44944, 46064, 46464, 46864, 48384, 48784, 61216, 61616, 62426, 63136
Offset: 1
Examples
a(10) = 14641 = 11^4 (the smallest odd value in this sequence). a(11) = 21312 = 2^6 * 3^2 * 37.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA046101 := proc(n) local ifs,f ; ifs := ifactors(n)[2] ; for f in ifs do if op(2,f) >= 4 then RETURN(true) ; fi ; od: RETURN(false) ; end: isA002113 := proc(n) local digs,i ; digs := convert(n,base,10) ; for i from 1 to nops(digs) do if op(i,digs) <> op(-i,digs) then RETURN(false) ; fi ; od: RETURN(true) ; end: isA133514 := proc(n) isA046101(n) and isA002113(n) ; end: for n from 1 to 100000 do if isA133514(n) then printf("%d, ",n) ; fi ; od: # R. J. Mathar, Jan 12 2008 # second Maple program: q:= n->StringTools[IsPalindrome](""||n) and max(map(i->i[2], ifactors(n)[2]))>3: select(q, [$1..70000])[]; # Alois P. Heinz, Sep 27 2023
-
Mathematica
a = {}; For[n = 2, n < 100000, n++, If[FromDigits[Reverse[IntegerDigits[n]]] == n, b = 0; For[l = 1, l < Length[FactorInteger[n]] + 1, l++, If[FactorInteger[n][[l,2]] > 3, b = 1]]; If[b == 1, AppendTo[a, n]]]]; a (* Stefan Steinerberger, Dec 26 2007 *) Select[Range@100000,PalindromeQ@#&&3
Hans Rudolf Widmer, Sep 27 2023 *)
Extensions
More terms from Stefan Steinerberger, Dec 26 2007
More terms from R. J. Mathar, Jan 12 2008
Comments