cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133562 Numbers which are the sum of the squares of seven consecutive primes.

Original entry on oeis.org

666, 1023, 1543, 2359, 3271, 4519, 6031, 7591, 9439, 11719, 14359, 17119, 20239, 23599, 27079, 31111, 35191, 39631, 45319, 51031, 56599, 62719, 68359, 74239, 82447, 90199, 98767, 107479, 118231, 129151, 141031, 151471, 162199, 173359
Offset: 1

Views

Author

Artur Jasinski, Sep 16 2007

Keywords

Comments

For primes in this sequence see A133560.
For sum of squares of two consecutive primes only 2^2 + 3^2 = 13 is prime.
For sum of squares of three consecutive primes A133529 it seems that only 83 is a prime (checked for all n < 1000000).
Sums of squares of four (and all even number) of consecutive primes are even numbers with exception n=1 but 2^2 + 3^2 + 5^2 + 7^2 = 87 = 3*29 is not prime.
For primes that are sums of squares of five consecutive primes see A133559.

Examples

			a(6) = 13^2 + 17^2 + 19^2 + 23^2 + 29^2 + 31^2 + 37^2 = 4519.
		

Crossrefs

Programs

  • Maple
    seq(add(ithprime(n+k)^2,k=0..6),n=1..35); # Muniru A Asiru, Jul 08 2018
  • Mathematica
    b = {}; a = 2; Do[k = Prime[n]^a + Prime[n + 1]^a + Prime[n + 2]^a + Prime[n + 3]^a + Prime[n + 4]^a + Prime[n + 5]^a + Prime[n + 6]^a; AppendTo[b, k], {n, 1, 100}]; b
    Total/@Partition[Prime[Range[40]]^2,7,1] (* Harvey P. Dale, Jan 01 2025 *)

Extensions

Edited by Michel Marcus, Jul 08 2018