A133624 Binomial(n+p, n) mod n, where p=4.
0, 1, 2, 2, 1, 0, 1, 7, 4, 1, 1, 8, 1, 8, 6, 13, 1, 7, 1, 6, 8, 12, 1, 3, 1, 1, 10, 8, 1, 26, 1, 25, 12, 1, 1, 22, 1, 20, 14, 31, 1, 15, 1, 12, 16, 24, 1, 5, 1, 1, 18, 14, 1, 46, 1, 43, 20, 1, 1, 36, 1, 32, 22, 49, 1, 23, 1, 18, 24, 36, 1, 7, 1, 1, 26, 20, 1, 66, 1, 61, 28, 1, 1, 50, 1, 44, 30
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1).
Crossrefs
Programs
-
Magma
[Binomial(n+4,4) mod n: n in [1..100]]; // Vincenzo Librandi, Apr 27 2014
-
Mathematica
Table[Mod[Binomial[n+4,n],n],{n,90}] (* Harvey P. Dale, Apr 26 2014 *)
Formula
a(n) = binomial(n+4,4) mod n.
a(n)=1 if n is a prime > 4, since binomial(n+4,n) == (1+floor(4/n))(mod n), provided n is a prime.
From Chai Wah Wu, May 26 2016: (Start)
a(n) = (n^4 + 10*n^3 + 11*n^2 + 2*n + 24)/24 mod n.
For n > 6:
if n mod 24 == 0, then a(n) = n/12 + 1.
if n mod 24 is in {1, 2, 5, 7, 10, 11, 13, 17, 19, 23}, then a(n) = 1.
if n mod 24 is in {3, 9, 15, 18, 21}, then a(n) = n/3 + 1.
if n mod 24 is in {4, 20}, then a(n) = n/4 + 1.
if n mod 24 == 6, then a(n) = 5*n/6 + 1.
if n mod 24 is in {8, 16}, then a(n) = 3*n/4 + 1.
if n mod 24 == 12, then a(n) = 7*n/12 + 1.
if n mod 24 is in {14, 22}, then a(n) = n/2 + 1.
(End)
For n > 54, a(n) = 2*a(n-24) - a(n-48). - Ray Chandler, Apr 23 2023
Comments