cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A133622 a(n) = 1 if n is odd, a(n) = n/2+1 if n is even.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 1, 11, 1, 12, 1, 13, 1, 14, 1, 15, 1, 16, 1, 17, 1, 18, 1, 19, 1, 20, 1, 21, 1, 22, 1, 23, 1, 24, 1, 25, 1, 26, 1, 27, 1, 28, 1, 29, 1, 30, 1, 31, 1, 32, 1, 33, 1, 34, 1, 35, 1, 36, 1, 37, 1, 38, 1, 39, 1, 40, 1, 41, 1, 42, 1, 43, 1, 44, 1
Offset: 1

Views

Author

Hieronymus Fischer, Sep 30 2007

Keywords

Comments

a(n) is the count of terms a(n+1) present so far in the sequence, with a(n+1) included in the count; example: a(1) = 1 "says" that there is 1 term "2" so far in the sequence; a(2) = 2 "says" that there are 2 terms "1" so far in the sequence... etc. This comment was inspired by A039617. - Eric Angelini, Mar 03 2020

Crossrefs

Programs

  • Haskell
    import Data.List (transpose)
    a133622 n = (1 - m) * n' + 1 where (n', m) = divMod n 2
    a133622_list = concat $ transpose [[1, 1 ..], [2 ..]]
    -- Reinhard Zumkeller, Feb 20 2015
    
  • Maple
    seq([1,n][],n=2..100); # Robert Israel, May 27 2016
  • Mathematica
    Riffle[Range[2,50],1,{1,-1,2}] (* Harvey P. Dale, Jan 19 2013 *)
  • PARI
    a(n)=if(n%2,1,n/2+1) \\ Charles R Greathouse IV, Sep 02 2015

Formula

a(n)=1+(binomial(n+1,2)mod n)=1+(binomial(n+1,n-1)mod n).
a(n)=binomial(n+2,2) mod n = binomial(n+2,n) mod n for n>2.
a(n)=1+(1+(-1)^n)*n/4.
a(n)=1+(A000217(n) mod n).
a(n)=a(n-2)+1, if n is even, a(n)=a(n-2) if n is odd.
a(n)=a(n-2)+1-(n mod 2)=a(n-2)+(1+(-1)^n)/2 for n>2.
a(n)=(a(n-3)+a(n-2))/a(n-1) for n>3.
G.f.: g(x)=x(1+2x-x^2-x^3)/(1-x^2)^2.
G.f.: (Q(0)-1-x)/x^2, where Q(k)= 1 + (k+1)*x/(1 - x/(x + (k+1)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Apr 23 2013
a(n) = 2*a(n-2)-a(n-4) for n > 4. - Chai Wah Wu, May 26 2016
E.g.f.: exp(x) - 1 + x*sinh(x)/2. - Robert Israel, May 27 2016

A133884 a(n) = binomial(n+4,n) mod 4.

Original entry on oeis.org

1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3, 3, 1, 1, 0, 0, 0, 0, 1, 1, 3, 3, 2, 2, 2, 2, 3
Offset: 0

Views

Author

Hieronymus Fischer, Oct 10 2007

Keywords

Comments

Periodic with length 4^2=16.

Examples

			For n=2, binomial(6,2) = 6*5/2 = 15, which is 3 (mod 4) so a(2) = 3. - _Michael B. Porter_, Jul 19 2016
		

Crossrefs

Programs

  • Magma
    [Binomial(n+4,n) mod 4: n in [0..100]]; // Vincenzo Librandi, Jul 15 2016
  • Mathematica
    Table[Mod[Binomial[n + 4, 4], 4], {n, 0, 100}] (* Vincenzo Librandi, Jul 15 2016 *)

Formula

a(n) = binomial(n+4,4) mod 4.
G.f.: (1 + x + 3*x^2 + 3*x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 + 3*x^8 + 3*x^9 + x^10 + x^11)/(1 - x^16) = (1 + 2*x^2 + 2*x^6 + x^8)/((1 - x)*(1 + x^4)*(1 + x^8)).
a(n) = A000505(n+5) mod 4. - John M. Campbell, Jul 14 2016
a(n) = A000506(n+6) mod 4. - John M. Campbell, Jul 15 2016

Extensions

G.f. corrected by Bruno Berselli, Jul 19 2016
Showing 1-2 of 2 results.