cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A141416 First differences of A133730.

Original entry on oeis.org

-1, -1, 2, 0, 0, -2, 4, -2, 4, -6, 12, -10, 20, -22, 44, -42, 84, -86, 172, -170, 340, -342, 684, -682, 1364, -1366, 2732, -2730, 5460, -5462, 10924, -10922, 21844, -21846, 43692, -43690, 87380, -87382, 174764, -174762, 349524, -349526, 699052, -699050, 1398100, -1398102
Offset: 0

Views

Author

Paul Curtz, Aug 05 2008

Keywords

Crossrefs

Programs

  • Magma
    I:=[-1,-1,2,0]; [n le 4 select I[n] else Self(n-2) +2*Self(n-4): n in [1..51]]; // G. C. Greubel, Mar 30 2021
    
  • Mathematica
    LinearRecurrence[{0,1,0,2}, {-1,-1,2,0}, 50] (* G. C. Greubel, Mar 30 2021 *)
    Differences[LinearRecurrence[{0,1,0,2},{1,0,-1,1},70]] (* Harvey P. Dale, Sep 04 2024 *)
  • Sage
    [((4*i^(n+1) - 2^((n+1)/2))*(1-(-1)^n) - 2*(4*i^n - 2^(n/2))*(1+(-1)^n))/12 for n in (0..50)] # G. C. Greubel, Mar 30 2021

Formula

a(2n) = (-1)^(n+1)*A084247(n).
a(2n+1) = -A078008(n).
a(2n) = -2*a(2n-1), n>0.
a(2n) + a(2n+1) = 2*(-1)^(n+1).
G.f.: (-1 -x +3*x^2 +x^3)/( (1-2*x^2)*(1+x^2) ). - R. J. Mathar, Jul 02 2011
a(n) = ((4*i^(n+1) - 2^((n+1)/2))*(1-(-1)^n) - 2*(4*i^n - 2^(n/2))*(1+(-1)^n))/12. - G. C. Greubel, Mar 30 2021

A133684 a(2n) = A001045(n); a(1)=1; a(2n+1) = 2*A001045(n-1) for n >= 1.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 3, 2, 5, 6, 11, 10, 21, 22, 43, 42, 85, 86, 171, 170, 341, 342, 683, 682, 1365, 1366, 2731, 2730, 5461, 5462, 10923, 10922, 21845, 21846, 43691, 43690, 87381, 87382, 174763, 174762, 349525, 349526, 699051, 699050, 1398101, 1398102, 2796203, 2796202
Offset: 0

Views

Author

Paul Curtz, Jan 04 2008

Keywords

Crossrefs

Cf. A001045, A016116, A133730 (first differences).

Programs

Formula

a(4*n) + a(4*n+1) = a(4*n+2).
a(n) + a(n+2) = 2^floor(n/2) = A016116(n).
O.g.f.: x - x^2*(1 + 2*x^3)/((2*x^2-1)*(x^2+1)) . - R. J. Mathar, Feb 23 2008
a(n+1) = 2*A135318(n) - A135318(n+1). - Paul Curtz, May 27 2024

Extensions

Terms a(24) and beyond from Andrew Howroyd, Feb 02 2020
Showing 1-2 of 2 results.