cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A133818 a(n) = (8*n+3)*(8*n+5)*(8*n+7)*(8*n+9).

Original entry on oeis.org

945, 36465, 229425, 801009, 2070705, 4456305, 8473905, 14737905, 23961009, 36954225, 54626865, 77986545, 108139185, 146289009, 193738545, 251888625, 322238385, 406385265, 506025009, 622951665, 759057585, 916333425, 1096868145
Offset: 0

Views

Author

Miklos Kristof, Jan 06 2008, Sep 15 2008

Keywords

Comments

Also 1/3-1/5-1/7+1/9+1/11-1/13-1/15+1/17+1/19--++... = Pi*sqrt(2)/4-1 - Miklos Kristof, Sep 15 2008
Also sum(2*(-1)^n/((4*n+3)*(4*n+5)), n=0..infinity) = Pi*sqrt(2)/4-1 - Miklos Kristof, Sep 15 2008

Programs

  • Maple
    seq((8*n+3)*(8*n+5)*(8*n+7)*(8*n+9), n=0..30);
    sum(32*(4*n+3)/((8*n+3)*(8*n+5)*(8*n+7)*(8*n+9)), n=0..infinity) = Pi*sqrt(2)/4-1. Maple: evalf(Pi*sqrt(2)/4-1, 30); gives 0.11072073453959156175397024752... - Miklos Kristof, Sep 15 2008
  • Mathematica
    Times@@@(#+{3,5,7,9}&/@(8Range[0,25])) (* Harvey P. Dale, Mar 14 2011 *)

Formula

G.f.: 3*(315 + 10580*x + 18850*x^2 + 3028*x^3 - 5*x^4)/(1-x)^5.
E.g.f: (945 + 35520*x + 78720*x^2 + 36864*x^3 + 4096*x^4)*exp(x).
a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5). - Wesley Ivan Hurt, Apr 26 2021