A133826 Triangle whose rows are sequences of increasing and decreasing tetrahedral numbers: 1; 1,4,1; 1,4,10,4,1; ... .
1, 1, 4, 1, 1, 4, 10, 4, 1, 1, 4, 10, 20, 10, 4, 1, 1, 4, 10, 20, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 84, 56, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 84, 120, 84, 56, 35, 20, 10, 4, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 120, 84, 56, 35, 20, 10, 4, 1
Offset: 0
Examples
Triangle T(n,k) starts: 1; 1, 4, 1; 1, 4, 10, 4, 1; 1, 4, 10, 20, 10, 4, 1; 1, 4, 10, 20, 35, 20, 10, 4, 1; 1, 4, 10, 20, 35, 56, 35, 20, 10, 4, 1; 1, 4, 10, 20, 35, 56, 84, 56, 35, 20, 10, 4, 1; ...
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
Programs
-
Maple
T:= n-> (f-> (f(i)$i=1..n, f(n-i)$i=1..n-1))(t-> t*(t+1)*(t+2)/6): seq(T(n), n=1..10); # Alois P. Heinz, Feb 17 2022
-
Mathematica
Module[{nn=10,tet},tet=Table[(n(n+1)(n+2))/6,{n,nn}];Table[Join[Take[ tet,k], Reverse[ Take[tet,k-1]]],{k,nn}]]//Flatten (* Harvey P. Dale, Oct 22 2017 *) Table[Series[(1-h^(2*N+4))^2/(1-h^2)^4-((2+N)^2 *h^(2N+2))/(1-h^2)^2, {h, 0, 4*N}], {N,0,5}] // Normal (* Sergii Voloshyn, Sep 09 2022 *)
Formula
O.g.f.: (1+q*x)/((1-x)*(1-q*x)^3*(1-q^2x)) = 1 + x*(1 + 4*q + q^2) + x^2*(1 + 4*q + 10*q^2 + 4*q^3 + q^4) + ... .
From Boris Putievskiy, Jan 13 2013: (Start)
a(n) = z*(z+1)*(z+2)/6, where z = floor(sqrt(n-1)) - |n - floor(sqrt(n-1))^2 - floor(sqrt(n-1)) - 1| + 1. (End)
Comments