A317058 a(n) is the smallest composite k such that 1^(k-1) + 2^(k-1) + ... + n^(k-1) == n (mod k).
4, 341, 473, 4, 4, 133, 497, 4, 4, 15, 9, 4, 4, 143, 35, 4, 4, 51, 57, 4, 4, 77, 253, 4, 4, 65, 9, 4, 4, 115, 155, 4, 4, 187, 35, 4, 4, 9, 247, 4, 4, 287, 2051, 4, 4, 15, 33, 4, 4, 35, 85, 4, 4, 9, 9, 4, 4, 551, 1711, 4, 4, 713, 21, 4, 4, 55, 77, 4, 4, 35, 35, 4
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..9661 (n = 1..500 from Seiichi Manyama)
- Wikipedia, Agoh-Giuga conjecture
Programs
-
Mathematica
a[n_] := Block[{k = 4}, While[PrimeQ[k] || Mod[Sum[PowerMod[j, k-1, k], {j, n}], k] != Mod[n, k], k++]; k]; Array[a, 72] (* Giovanni Resta, Jul 26 2018 *)
-
PARI
a(n) = forcomposite(k=1,, if (sum(j=1,n, Mod(j,k)^(k-1)) == n, return (k));); \\ Michel Marcus, Jul 26 2018
-
Python
from sympy import isprime def g(n,p,q): # compute (-n + sum_{k=1,n} k^p) mod q c = (-n) % q for k in range(1,n+1): c = (c+pow(k,p,q)) % q return c def A317058(n): k = 2 while isprime(k) or g(n,k-1,k): k += 1 return k # Chai Wah Wu, Jul 30 2018
Extensions
More terms from Giovanni Resta, Jul 26 2018
Comments