cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A089812 Expansion of Jacobi theta function q^(-1/8) * (theta_2(q^(1/2)) - 3 * theta_2(q^(9/2))) / 2 in powers of q.

Original entry on oeis.org

1, -2, 0, 1, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^2, b = x. - Michael Somos, Jan 21 2012
Number 7 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, Jan 01 2015

Examples

			G.f. = 1 - 2*x + x^3 + x^6 - 2*x^10 + x^15 + x^21 - 2*x^28 + x^36 + x^45 + ...
G.f. = q - 2*q^9 + q^25 + q^49 - 2*q^81 + q^121 + q^169 - 2*q^225 + q^289 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(144), 1/2), 841); A[2] - 2*A[7]; /* Michael Somos, Jan 01 2015 */
  • Mathematica
    a[n_] := Boole[ IntegerQ[ Sqrt[8*n + 1]]]*(1 - 3*Boole[ Mod[n, 3] > 0]); Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Oct 31 2012, after Michael Somos *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 1, Pi/6, x^(1/2)] / x^(1/8), {x, 0, n}]; (* Michael Somos, Jan 01 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/3, x^(1/2)] / x^(1/8), {x, 0, n}]; (* Michael Somos, Jan 01 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^(1/2)] - 3 EllipticTheta[ 2, 0, x^(9/2)]) / (2 x^(1/8)), {x, 0, n}]; (* Michael Somos, Jan 01 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, issquare( 8*n + 1) * (1 - 3*(n%3>0)))}; /* Michael Somos, Nov 05 2005 */
    
  • PARI
    {a(n) = (-1)^(n\3 + n) * ((n + 1)%3) * issquare( 8*n + 1)}; /* Michael Somos, Dec 23 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A) / eta(x^2 + A) / eta(x^3 + A), n))}; /* Michael Somos, Nov 05 2005 */
    

Formula

Expansion of q^(-1/8) * eta(q)^2 * eta(q^6) / ( eta(q^2) * eta(q^3) ) in powers of q. - Michael Somos, Nov 05 2005
Expansion of Jacobi theta function q^(-1/4) * theta_1(Pi/6, q) in powers of q^2. - Michael Somos, Sep 17 2007
Expansion of f(-x, -x^5) * f(-x) / f(-x^6) = f(x^3, x^6) - x * f(1, x^9) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of phi(-x^9) / chi(-x^3) - 2 * x * psi(x^9) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of phi(-x) / chi(-x^3) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, May 04 2016
Euler transform of period 6 sequence [ -2, -1, -1, -1, -2, -1, ...]. - Michael Somos, Nov 05 2005
a(n) = b(8*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = -2 * (1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 18^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089802.
G.f.: Sum_{k>0} x^((k^2 - k)/2) - 3 * x^(9(k^2 - k)/2 + 1) = Product_{k>0} (1 - x^k) * (1 - x^(6*k - 1)) * (1 - x^(6*k - 5)). - Michael Somos, Nov 05 2005
G.f.: Sum_{k in Z} x^(3*k * (3*k + 1)/2) * ( x^(-3*k) - x^(3*k + 1) ). - Michael Somos, Jan 21 2012
A133988(n) = (-1)^n * a(n). Convolution inverse of A101230.
a(n) = (floor(sqrt(2*(n+1))+1/2)-floor(sqrt(2*n)+1/2))*(-2+4*sin((floor(sqrt(2*(n+1))+1/2)+1)*Pi/3)^2). - Mikael Aaltonen, Jan 17 2015

A089807 Expansion of Jacobi theta function (3theta_3(q^9)-theta_3(q))/2.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^5, b = x. - Michael Somos, Jul 12 2012
Number 11 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - q - q^4 + 2*q^9 - q^16 - q^25 + 2*q^36 - q^49 - q^64 + 2*q^81 + ...
		

Crossrefs

Related to the 14 primitive eta-products which are holomorphic modular forms of weight 1/2: A000122, A002448, A010054, A010815, A080995, A089801, A089802, this sequence, A089810, A089812, A106459, A121373, A133985, A133988. - Seiichi Manyama, May 15 2017

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/3, q], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 3, 0, q^9] - EllipticTheta[ 3, 0, q])/2, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3, q^6] EllipticTheta[ 2, 0, Sqrt[ -q]] / (2 (-q)^(1/8)), {q, 0, n}] (* Michael Somos, Jul 12 2012 *);
  • PARI
    {a(n) = if( n<1, n==0, issquare(n) * (3*(n%3==0) - 1))}; /* Michael Somos, Nov 05 2005 */

Formula

a(n) = -b(n) where b() is multiplicative with b(3^e) = -2(1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 otherwise.
From Michael Somos, Nov 05 2005: (Start)
Expansion of eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, 0, -1, -1, -1, -1, -1, 0, 0, -1, -1, ...].
G.f.: (Sum_{k in Z} 3 * x^((3*k)^2) - x^(k^2)) / 2 = Product_{k>0} (1 - x^k) / ((1 - x^(12*k - 2)) * (1 - x^(12*k - 3)) * (1 - x^(12*k - 9)) * (1 - x^(12*k - 10))). (End)
Expansion of Jacobi theta function theta_3(Pi/3, q) in powers of q. - Michael Somos, Jan 26 2006
Expansion of chi(q^3) * psi(-q) in powers of q where chi(), psi() are Ramanujan theta functions. - Michael Somos, May 19 2007
Expansion of f(x*w, x/w) in powers of x where w is a primitive cube root of unity and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 18^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089801.
a(n) = (-1)^n * A089810(n). - Michael Somos, Jan 20 2012
For n > 0, a(n) = (floor(sqrt(n))-floor(sqrt(n-1)))*(2-4*sin(floor(sqrt(n))*Pi/3)^2). - Mikael Aaltonen, Jan 17 2015
Sum_{k=1..n} abs(a(k)) ~ (4/3)*sqrt(n). - Amiram Eldar, Jan 27 2024

A133985 Expansion of f(-x, x^2) in powers of x where f(, ) is Ramanujan's general theta function.

Original entry on oeis.org

1, -1, 1, 0, 0, -1, 0, -1, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Michael Somos, Oct 01 2007, Oct 04 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
a(n) is nonzero if and only if n is a number of A001318.
The exponents in the q-series for this sequence are the squares of the numbers of A007310.
Number 14 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - x + x^2 - x^5 - x^7 + x^12 - x^15 + x^22 + x^26 - x^35 + x^40 + ...
G.f. = q - q^25 + q^49 - q^121 - q^169 + q^289 - q^361 + q^529 + q^625 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := (-1)^n Boole[ IntegerQ[ Sqrt[24 n + 1]]]; (* Michael Somos, Jan 10 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, x^3]  QPochhammer[ x, -x], {x, 0, n}]; (* Michael Somos, Oct 30 2015 *)
  • PARI
    {a(n) = (-1)^n * issquare( 24*n + 1) };
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A) * eta(x^4 + A) * eta(x^6 + A)^5 / (eta(x^2 + A) * eta(x^3 + A) * eta(x^12 + A))^2, n))};

Formula

Expansion of phi(x^3) / chi(x) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of q^(-1/24) * eta(q) * eta(q^4) * eta(q^6)^5 / (eta(q^2) * eta(q^3) * eta(q^12))^2 in powers of q.
Euler transform of period 12 sequence [ -1, 1, 1, 0, -1, -2, -1, 0, 1, 1, -1, -1, ...].
a(n) = b(24*n + 1) where b() is multiplicative with b(p^(2*e)) = (-1)^e if p == 3, 5 (mod 8), b(p^(2*e)) = +1 if p == 1, 7 (mod 8) and b(p^(2*e-1)) = b(2^e) = b(3^e) = 0 if e>0.
G.f. is a period 1 Fourier series which satisfies f(-1 / (2304 t)) = 4 (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A133988.
a(5*n + 3) = a(5*n + 4) = 0. a(25*n + 1) = -a(n). a(n) = (-1)^n * A080995(n).
G.f. Sum_{k>=0} a(k) * q^(24*k + 1) = Sum_{k in Z} (-1)^floor(k/2) * q^(6*k + 1)^2.
Expansion of f(-x^5, -x^7) - x * f(-x, -x^11) in powers of x. - Michael Somos, Jan 10 2015
Showing 1-3 of 3 results.