A089802 Expansion of q^(-1/3) * (theta_4(q^3) - theta_4(q^(1/3))) / 2 in powers of q.
1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 1 - x - x^5 + x^8 + x^16 - x^21 - x^33 + x^40 + x^56 - x^65 - x^85 + ... G.f. = q - q^4 - q^16 + q^25 + q^49 - q^64 - q^100 + q^121 + q^169 - q^196 + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..10000
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
- Eric Weisstein's World of Mathematics, Jacobi Theta Functions
- I. J. Zucker, Further Relations Amongst Infinite Series and Products. II. The Evaluation of Three-Dimensional Lattice Sums, J. Phys. A: Math. Gen. 23, 117-132, 1990.
Programs
-
Mathematica
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] - EllipticTheta[ 4, 0, x^(1/3)]) / (2 x^(1/3)), {x, 0, n}]; (* Michael Somos, Jun 30 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8)), {x, 0, n}]; (* Michael Somos, Jun 30 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^3, x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *) a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^6] QPochhammer[ x^5, x^6] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *) a[ n_] := (-1)^n Sign @ SquaresR[ 1, 3 n + 1]; (* Michael Somos, Jun 30 2015 *)
-
PARI
{a(n) = (-1)^n * issquare(3*n + 1)}; /* Michael Somos, Apr 12 2005 */
Formula
Expansion of q^(-1/3) * (eta(q) * eta(q^6)^2) / (eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Apr 12 2005
Expansion of chi(-x) * psi(x^3) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Dec 23 2011
Expansion of f(-x, -x^5) in powers of x, where f(, ) is Ramanujan's general theta function.
a(n) = b(3*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(2^e) = - (1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 8^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089812. - Michael Somos, Dec 23 2011
Euler transform of period 6 sequence [-1, 0, 0, 0, -1, -1, ...]. - Michael Somos, Apr 12 2005
abs(a(n)) is the characteristic function of A001082. - Michael Somos, Oct 31 2005
G.f.: Sum_{k in Z} (-1)^k * x^((3*k^2 - 2*k)) = Product_{k>0} (1 - x^(6*k)) * (1 - x^(6*k - 1)) * (1 - x^(6*k - 5)). - Michael Somos, Oct 31 2005
A002448(3*n + 1) = -2 * a(n). - Michael Somos, Jul 07 2006
a(n) = (-1)^n * A089801(n).
a(n) = -(1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
Extensions
Corrected by N. J. A. Sloane, Nov 05 2005
Comments