cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A002448 Expansion of Jacobi theta function theta_4(x).

Original entry on oeis.org

1, -2, 0, 0, 2, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 2 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - 2*q + 2*q^4 - 2*q^9 + 2*q^16 - 2*q^25 + 2*q^36 - 2*q^49 + ...
		

References

  • Richard Bellman, A Brief Introduction to Theta Functions, Dover, 2013.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 93, Eq. (34.11), p. 6, Eq. (7.324).
  • J. Tannery and J. Molk, Eléments de la Théorie des Fonctions Elliptiques, Vol. 2, Gauthier-Villars, Paris, 1902; Chelsea, NY, 1972, see p. 27.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Univ. Press, 4th ed., 1963, p. 464.

Crossrefs

Programs

  • Julia
    using Nemo
    function JacobiTheta4(len, r)
        R, x = PolynomialRing(ZZ, "x")
        e = theta_qexp(r, len, -x)
        [fmpz(coeff(e, j)) for j in 0:len - 1] end
    A002448List(len) = JacobiTheta4(len, 1)
    A002448List(105) |> println # Peter Luschny, Mar 12 2018
    
  • Maple
    Sum((-x)^(m^2),m=-10..10);
  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, q], {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
    QP = QPochhammer; s = QP[q]^2/QP[q^2] + O[q]^105; CoefficientList[s, q] (* Jean-François Alcover, Dec 01 2015, adapted from PARI *)
  • PARI
    {a(n) = if( n<0, 0, (-1)^n * issquare(n) * 2 - (n==0))}; /* Michael Somos, Jun 17 1999 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 / eta(x^2 + A), n))}; /* Michael Somos, May 01 2003 */
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A002448(n): return (-is_square(n) if n&1 else is_square(n))<<1 if n else 1 # Chai Wah Wu, May 17 2023

Formula

Expansion of phi(-q) in powers of q where phi() is a Ramanujan theta function.
Expansion of eta(q)^2 / eta(q^2) in powers of q. - Michael Somos, May 01 2003
Expansion of 2 * sqrt( k' * K / (2 Pi) ) in powers of q. - Michael Somos, Nov 30 2013
Euler transform of period 2 sequence [ -2, -1, ...]. - Michael Somos, May 01 2003
G.f.: Sum_{k in Z} (-1)^k * x^(k^2) = Product_{k>0} (1 - x^k) / (1 + x^k). - Michael Somos, May 01 2003.
G.f.: 1 - 2 Sum_{k>0} x^k/(1 - x^k) Product_{j=1..k} (1 - x^j) / (1 + x^j). - Michael Somos, Apr 12 2012
a(n) = -2 * b(n) where b(n) is multiplicative and b(2^e) = (-1)^(e/2) if e even, b(p^e) = 1 if p>2 and e even, otherwise 0. - Michael Somos, Jul 07 2006
a(3*n + 1) = -2 * A089802(n), a(9*n) = a(n). - Michael Somos, Jul 07 2006
a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = 0. a(4*n) = A000122(n). a(n) = (-1)^n * A000122(n). a(8*n + 1) = -2 * A010054(n). - Michael Somos, Apr 12 2012
For n > 0, a(n) = 2*(floor(sqrt(n))-floor(sqrt(n-1)))*(-1)^(floor(sqrt(n))). - Mikael Aaltonen, Jan 17 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (16 t)) = 32^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A010054. - Michael Somos, May 05 2016
a(0) = 1, a(n) = -(2/n)*Sum_{k=1..n} A002131(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 29 2017
G.f.: exp(Sum_{k>=1} (sigma(k) - sigma(2*k))*x^k/k). - Ilya Gutkovskiy, Sep 19 2018
From Peter Bala, Feb 19 2021: (Start)
G.f: A(q) = eta(q^2)^5 / ( eta(-q)*eta(q^4) )^2.
A(q) = 1 + 2*Sum_{n >= 1} (-1)^n*q^(n*(n+1)/2)/( (1 + q^n) * Product_{k = 1..n} 1 - q^k ).
A(-q)^2 = 1 + 4*Sum_{n >= 1} (-1)^(n+1)*q^(2*n-1)/(1 - q^(2*n-1)), which gives the number of representations of an integer as a sum of two squares. See, for example, Fine, 26.63.
The unsigned sequence has the g.f. 1 + 2*Sum_{n >= 1} q^(n*(n+1)/2) * ( Product_{k = 1..n-1} 1 + q^k ) /( Product_{k = 1..n} 1 + q^(2*k) ) = 1 + 2*q + 2*q^4 + 2*q^9 + .... See Fine, equation 14.43. (End)
Form Peter Bala, Sep 27 2023: (Start)
G.f. A(q) satisfies A(q)*A(-q) = A(q^2)^2.
A(q) = Sum_{n >= 1} (-q)^(n-1)*Product_{k >= n} 1 - q^k. (End)

A089801 a(n) = 0 unless n = 3j^2 + 2j or 3j^2 + 4j + 1 for some j >= 0, in which case a(n) = 1.

Original entry on oeis.org

1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also characteristic function of generalized octagonal numbers A001082. - Omar E. Pol, Jul 13 2012
Number 12 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 + x + x^5 + x^8 + x^16 + x^21 + x^33 + x^40 + x^56 + x^65 + x^85 + ...
G.f. = q + q^4 + q^16 + q^25 + q^49 + q^64 + q^100 + q^121 + q^169 + q^196 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(36), 1/2), 87) [2]; /* Michael Somos, Jul 02 2014 */
    
  • Maple
    A089801 := proc(n)
            A033684(3*n+1) ;
    end proc: # R. J. Mathar, Oct 07 2011
    M:=33;
    S:=f->series(f,q,500);
    L:=f->seriestolist(f);
    X:=add(q^(3*n^2+2*n),n=-M..M);
    S(%);
    L(%); # N. J. A. Sloane, Jan 31 2012
    eps:=Array(0..120,0);
    for j from 0 to 120 do
    if 3*j^2+2*j <= 120 then eps[3*j^2+2*j] := 1; fi;
    if 3*j^2+4*j+1 <= 120 then eps[3*j^2+4*j+1] := 1; fi;
    end do;  # N. J. A. Sloane, Aug 12 2017
  • Mathematica
    a[ n_] := SeriesCoefficient[ (1/2) x^(-1/3) (EllipticTheta[ 3, 0, x^(1/3)] - EllipticTheta[ 3, 0, x^3]), {x, 0, n}]; (* Michael Somos, Jun 29 2012 *)
    a[ n_] := SeriesCoefficient[ 2^(-1/2) x^(-3/8) QPochhammer[ -x, x^2] EllipticTheta[ 2, Pi/4, x^(3/2)], {x, 0, n}]; (* Michael Somos, Jun 29 2012 *)
  • PARI
    {a(n) = issquare(3*n + 1)}; /* Michael Somos, Apr 12 2005 */
    
  • Python
    from sympy.ntheory.primetest import is_square
    def A089801(n): return int(is_square(3*n+1)) # Chai Wah Wu, May 17 2023

Formula

G.f.: Sum_{n=-oo..oo} q^(3n^2+2n).
Expansion of Jacobi theta function (theta_3(q^(1/3)) - theta_3(q^3))/(2 q^(1/3)) in powers of q.
Euler transform of period 12 sequence [1, -1, 0, 0, 1, -1, 1, 0, 0, -1, 1, -1, ...]. - Michael Somos, Apr 12 2005
a(n) = b(3*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(p^e) = (1 + (-1)^e) / 2 if p != 3. - Michael Somos, Jun 06 2005; b=A033684. - R. J. Mathar, Oct 07 2011
Expansion of q^(-1/3) * eta(q^2)^2 * eta(q^3) * eta(q^12) / (eta(q) * eta(q^4) * eta(q^6)) in powers of q. - Michael Somos, Apr 12 2005
Expansion of chi(x) * psi(-x^3) in powers of x where chi(), psi() are Ramanujan theta functions. - Michael Somos, Apr 19 2007
Expansion of f(x, x^5) in powers of x where f(, ) is Ramanujan's general theta function. - Michael Somos, Jun 29 2012
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089807.
a(8*n + 4) = a(4*n + 2) = a(4*n + 3) = 0, a(4*n + 1) = a(n), a(8*n) = A080995(n). - Michael Somos, Jan 28 2011
a(n) = (-1)^n * A089802(n).
For n > 0, a(n) = b(n)-b(n-1) + c(n)-c(n-1), where b(n) = floor(sqrt(n/3+1/9)+2/3) and c(n) = floor(sqrt(n/3+1/9)+4/3). - Mikael Aaltonen, Jan 22 2015
a(n) = A033684(3*n + 1). - Michael Somos, Jan 10 2017

Extensions

Edited with simpler definition by N. J. A. Sloane, Jan 31 2012
Further edited by N. J. A. Sloane, Aug 12 2017

A195848 Expansion of 1 / f(-x^1, -x^5) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 5, 7, 10, 12, 13, 14, 16, 21, 27, 32, 35, 38, 44, 54, 67, 78, 86, 94, 107, 128, 153, 176, 194, 213, 241, 282, 331, 376, 415, 456, 512, 590, 680, 767, 845, 928, 1037, 1180, 1345, 1506, 1657, 1818, 2020, 2278, 2570, 2862, 3142, 3442
Offset: 0

Views

Author

Omar E. Pol, Sep 24 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also column 4 of A195825, therefore this sequence contains two plateaus: [1, 1, 1, 1, 1], [4, 4, 4]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 26 2012
The number of partitions of n into parts congruent to 0, 1 or 5 ( mod 6 ). - Peter Bala, Dec 09 2020

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
G.f. = 1/q + q^2 + q^5 + q^8 + q^11 + 2*q^14 + 3*q^17 + 4*q^20 + 4*q^23 + 4*q^26 + ...
		

Crossrefs

Column 1 of triangle A195838. Also 1 together with the row sums of triangle A195838. Column 4 of array A195825.
Cf. A089802.

Programs

  • Maple
    A001082 := proc(n)
            if type(n,'even') then
                    n*(3*n-4)/4 ;
            else
                    (n-1)*(3*n+1)/4 ;
            end if;
    end proc:
    A195838 := proc(n,k)
            option remember;
            local ks,a,j ;
            if A001082(k+1) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A001082(j+1) <= n-1 then
                                    a := a+procname(n-1,j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A001082(k+1) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1,1) ;
            end if;
    end proc:
    A195848 := proc(n)
            A195838(n+1,1) ;
    end proc:
    seq(A195848(n),n=0..60) ; # R. J. Mathar, Oct 07 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]^2), {x, 0, n}]; (* Michael Somos, Oct 18 2014 *)
    a[ n_] := SeriesCoefficient[ 2 q^(3/8) / (QPochhammer[ q, q^2] EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Oct 18 2014 *)
    nmax = 60; CoefficientList[Series[Product[(1+x^k) / ((1+x^(3*k)) * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 07 2012 */
    From Omar E. Pol, Jun 10 2012: (Start)
    (GW-BASIC)' A program with two A-numbers:
    10 Dim A001082(100), A057077(100), a(100): a(0)=1
    20 For n = 1 to 58: For j = 1 to n
    30 If A001082(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A001082(j))
    40 Next j: Print a(n-1);: Next n (End)

Formula

Expansion of 1 / (psi(x^3) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Jun 07 2012
Expansion of q^(1/3) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)^2) in powers of q. - Michael Somos, Jun 07 2012
Euler transform of period 6 sequence [ 1, 0, 0, 0, 1, 1, ...]. - Michael Somos, Oct 18 2014
Convolution inverse of A089802. - Michael Somos, Oct 18 2014
a(n) ~ exp(Pi*sqrt(n/3))/(4*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
From Peter Bala, Dec 09 2020: (Start)
O.g.f.: 1/( Product_{n >= 1} (1 - x^(6*n-5))*(1 - x^(6*n-1))*(1 - x^(6*n)) ).
a(n) = a(n-1) + a(n-5) - a(n-8) - a(n-16) + + - - ... (with the convention a(n) = 0 for negative n), where 1, 5, 8, 16, ... is the sequence of generalized octagonal numbers A001082. (End)

Extensions

New sequence name from Michael Somos, Oct 18 2014

A258278 Expansion of f(-x, -x^5)^2 in powers of x where f(,) is Ramanujan's general theta function.

Original entry on oeis.org

1, -2, 1, 0, 0, -2, 2, 0, 2, -2, 1, 0, 0, -2, 0, 0, 3, -2, 0, 0, 0, -4, 2, 0, 2, 0, 2, 0, 0, -2, 0, 0, 1, -2, 2, 0, 0, -2, 2, 0, 2, -4, 1, 0, 0, -2, 0, 0, 2, -2, 0, 0, 0, 0, 2, 0, 4, -2, 0, 0, 0, -4, 0, 0, 2, -2, 3, 0, 0, 0, 2, 0, 2, -4, 0, 0, 0, -2, 0, 0, 1
Offset: 0

Views

Author

Michael Somos, May 25 2015

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + x^2 - 2*x^5 + 2*x^6 + 2*x^8 - 2*x^9 + x^10 - 2*x^13 + ...
G.f. = q^2 - 2*q^5 + q^8 - 2*q^17 + 2*q^20 + 2*q^26 - 2*q^29 + q^32 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 EllipticTheta[ 2, 0, x^(3/2)]^2 / (4 x^(3/4)), {x, 0, n}];
  • PARI
    {a(n) = if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^6 + A)^2 / (eta(x^2 + A) * eta(x^3 + A)))^2, n))};

Formula

Expansion of (chi(-x) * psi(x^3))^2 in powers of x where chi(), psi() are Ramanujan theta functions.
Expansion of q^(-2/3) * (eta(q) * eta(q^6)^2 / (eta(q^2) * eta(q^3)))^2 in powers of q.
Euler transform of period 6 sequence [ -2, 0, 0, 0, -2, -2, ...].
a(n) = (-1)^n * A122856(n). Convolution square of A089802.
a(2*n) = A122865(n). a(4*n +1) = -2 * A121444(n). a(4*n + 2) = A122856(n). a(4*n + 3) = a(8*n + 4) = 0. a(8*n) = A002175(n). a(8*n + 2) = A122856(n).
2 * a(n) = -A258210(3*n + 2). - Michael Somos, May 01 2016

A089812 Expansion of Jacobi theta function q^(-1/8) * (theta_2(q^(1/2)) - 3 * theta_2(q^(9/2))) / 2 in powers of q.

Original entry on oeis.org

1, -2, 0, 1, 0, 0, 1, 0, 0, 0, -2, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^2, b = x. - Michael Somos, Jan 21 2012
Number 7 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, Jan 01 2015

Examples

			G.f. = 1 - 2*x + x^3 + x^6 - 2*x^10 + x^15 + x^21 - 2*x^28 + x^36 + x^45 + ...
G.f. = q - 2*q^9 + q^25 + q^49 - 2*q^81 + q^121 + q^169 - 2*q^225 + q^289 + ...
		

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(144), 1/2), 841); A[2] - 2*A[7]; /* Michael Somos, Jan 01 2015 */
  • Mathematica
    a[n_] := Boole[ IntegerQ[ Sqrt[8*n + 1]]]*(1 - 3*Boole[ Mod[n, 3] > 0]); Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Oct 31 2012, after Michael Somos *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 1, Pi/6, x^(1/2)] / x^(1/8), {x, 0, n}]; (* Michael Somos, Jan 01 2015 *)
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, Pi/3, x^(1/2)] / x^(1/8), {x, 0, n}]; (* Michael Somos, Jan 01 2015 *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x^(1/2)] - 3 EllipticTheta[ 2, 0, x^(9/2)]) / (2 x^(1/8)), {x, 0, n}]; (* Michael Somos, Jan 01 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, issquare( 8*n + 1) * (1 - 3*(n%3>0)))}; /* Michael Somos, Nov 05 2005 */
    
  • PARI
    {a(n) = (-1)^(n\3 + n) * ((n + 1)%3) * issquare( 8*n + 1)}; /* Michael Somos, Dec 23 2011 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 * eta(x^6 + A) / eta(x^2 + A) / eta(x^3 + A), n))}; /* Michael Somos, Nov 05 2005 */
    

Formula

Expansion of q^(-1/8) * eta(q)^2 * eta(q^6) / ( eta(q^2) * eta(q^3) ) in powers of q. - Michael Somos, Nov 05 2005
Expansion of Jacobi theta function q^(-1/4) * theta_1(Pi/6, q) in powers of q^2. - Michael Somos, Sep 17 2007
Expansion of f(-x, -x^5) * f(-x) / f(-x^6) = f(x^3, x^6) - x * f(1, x^9) in powers of x where f(, ) is Ramanujan's general theta function.
Expansion of phi(-x^9) / chi(-x^3) - 2 * x * psi(x^9) in powers of x where phi(), chi() are Ramanujan theta functions.
Expansion of phi(-x) / chi(-x^3) in powers of x where phi(), chi() are Ramanujan theta functions. - Michael Somos, May 04 2016
Euler transform of period 6 sequence [ -2, -1, -1, -1, -2, -1, ...]. - Michael Somos, Nov 05 2005
a(n) = b(8*n + 1) where b() is multiplicative with b(2^e) = 0^e, b(3^e) = -2 * (1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 18^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089802.
G.f.: Sum_{k>0} x^((k^2 - k)/2) - 3 * x^(9(k^2 - k)/2 + 1) = Product_{k>0} (1 - x^k) * (1 - x^(6*k - 1)) * (1 - x^(6*k - 5)). - Michael Somos, Nov 05 2005
G.f.: Sum_{k in Z} x^(3*k * (3*k + 1)/2) * ( x^(-3*k) - x^(3*k + 1) ). - Michael Somos, Jan 21 2012
A133988(n) = (-1)^n * a(n). Convolution inverse of A101230.
a(n) = (floor(sqrt(2*(n+1))+1/2)-floor(sqrt(2*n)+1/2))*(-2+4*sin((floor(sqrt(2*(n+1))+1/2)+1)*Pi/3)^2). - Mikael Aaltonen, Jan 17 2015

A284362 a(n) = Sum_{d|n, d = 0, 1, or 5 mod 6} d.

Original entry on oeis.org

1, 1, 1, 1, 6, 7, 8, 1, 1, 6, 12, 19, 14, 8, 6, 1, 18, 25, 20, 6, 8, 12, 24, 43, 31, 14, 1, 8, 30, 42, 32, 1, 12, 18, 48, 73, 38, 20, 14, 6, 42, 56, 44, 12, 6, 24, 48, 91, 57, 31, 18, 14, 54, 79, 72, 8, 20, 30, 60, 114, 62, 32, 8, 1, 84, 84, 68, 18, 24, 48, 72
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Examples

			From _Peter Bala_, Dec 11 2020: (Start)
n = 20: n is not of the form m*(3*m +- 2), so e(n) = 0 and a(20) = a(19) + a(15) - a(12) - a(4) = 20 + 6 - 19 - 1 = 6;
n = 21: n = m*(3*m - 2) for m = 3, so e(n) = 21 and a(21) = 21 + a(20) + a(16) - a(13) - a(5) = 21 + 6 + 1 - 14 - 6 = 8;
n = 40: n = m*(3*m - 2) for m = 4, so e(n) = -40 and a(4) = -40 + a(39) + a(35) - a(32) - a(24) + a(19) + a(7) = -40 + 14 + 48  - 1 - 43 + 20 + 8 = 6. (End)
		

Crossrefs

Cf. A089802 (f(-x, -x^5)), A195848 (1/f(-x, -x^5)), A222171.
Cf. Sum_{d|n, d = 0, 1, or k-1 mod k} d: A000203 (k=3), A284361 (k=5), this sequence (k=6), A284363 (k=7), A284372 (k=12).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 6] <2 || Mod[d, 6]==5, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    a(n) = sumdiv(n, d, ((d + 1) % 6 < 3) * d); \\ Amiram Eldar, Apr 12 2024

Formula

From Peter Bala, Dec 11 2020: (Start)
O.g.f.: Sum_{k >= 1} ( (6*k)*x^(6*k)/(1 - x^(6*k)) + (6*k-1)*x^(6*k-1)/(1 - x^(6*k-1)) + (6*k-5)*x^(6*k-5)/(1 - x^(6*k-5)) ).
Define a(n) = 0 for n < 1. Then a(n) = e(n) + a(n-1) + a(n-5) - a(n-8) - a(n-16) + + - -, where [1, 5, 8, 16, ...] is the sequence of generalized octagonal numbers A001082, and e(n) = (-1)^(m+1)*n if n is a generalized octagonal number of the form m*(3*m+-2); otherwise e(n) = 0. Examples of this recurrence are given below. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = A222171 = 0.411233... . - Amiram Eldar, Apr 12 2024

A089810 Expansion of Jacobi theta function theta_3(Pi/6, q) in powers of q.

Original entry on oeis.org

1, 1, 0, 0, -1, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = -x^5, b = -x. - Michael Somos, Jul 12 2012
Convolution square is A258279. - Michael Somos, May 25 2015
Number 8 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 + q - q^4 - 2*q^9 - q^16 + q^25 + 2*q^36 + q^49 - q^64 - 2*q^81 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/6, q], {q, 0, n}]; (* Michael Somos, Nov 14 2011 *)
    a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 4, 0, q^9] - EllipticTheta[ 4, 0, q])  /2, {q, 0, n}]; (* Michael Somos, Nov 14 2011 *)
    QP = QPochhammer; s = QP[q^2]^2*(QP[q^3] / (QP[q]*QP[q^6])) + O[q]^100; CoefficientList[s, q] (* Jean-François Alcover, Nov 09 2015, adapted from PARI *)
  • PARI
    {a(n) = my(x); if( n<1, n==0, issquare(n, &x) * (1 + (n%3==0)) * (-1)^((1 + x) \ 3))}; /* Michael Somos, Nov 05 2005 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Jan 26 2008 */

Formula

Expansion of Jacobi theta function (3theta_4(q^9) - theta_4(q)) / 2 in powers of q.
a(n) is multiplicative with a(0)=1, a(2^e) = -(1 + (-1)^e)/2, if e>0, a(3^e) = -2(1 + (-1)^e)/2 if e>0, a(p^e) = (1 + (-1)^e)/2 otherwise.
From Michael Somos, Nov 05 2005: (Start)
Euler transform of period 6 sequence [ 1, -1, 0, -1, 1, -1, ...].
G.f.: (Sum_{k in Z} 3 * (-x)^((3*k)^2) - (-x)^(k^2)) / 2 = Product_{k>0} (1 - x^(2*k)) / ((1 - x^(6*k - 1)) * (1 - x^(6*k-5))).
Expansion of eta(q^2)^2 * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. (End)
Expansion of psi(q) * chi(-q^3) in powers of q where psi(), chi() are Ramanujan theta functions. - Michael Somos, Sep 16 2007
Expansion of (3 * phi(-q^9) - phi(-q)) / 2 in powers of q where phi() is a Ramanujan theta function.
From Michael Somos, Sep 17 2007: (Start)
Expansion of Jacobi theta function theta_3(Pi/6, q) in powers of q.
Expansion of f(x*w, x/w) in powers of x where w is a primitive sixth root of unity and f() is Ramanujan's two-variable theta function. (End)
From Michael Somos, Jan 26 2008: (Start)
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 72^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g(t) is the g.f. for A080995.
G.f.: Product_{k>0} (1 - x^(2*k)) / (1 - x^k + x^(2*k)). (End)
a(3*n + 2) = a(4*n + 2) = a(4*n + 3) = a(5*n + 2) = a(5*n + 3) = a(8*n + 5) = a(9*n + 3) = a(9*n + 6) = 0. a(3*n + 1) = A089802(n). a(4*n) = A089807(n). a(9*n) = A002448(n).
a(n) = (floor(sqrt(n))-floor(sqrt(n-1)))*(abs(2-4*sin((floor(sqrt(n))+1)*Pi/3)^2) - 4*sin((floor(sqrt(n))+2)*Pi/3)^2)*(-1)^floor(floor(sqrt(n)-1)/3). - Mikael Aaltonen, Jan 17 2015
From Michael Somos, May 25 2015: (Start)
a(n) = (-1)^n * A089807(n) = A204843(4*n) = A204853(4*n).
a(8*n + 1) = A089812(n). a(12*n + 4) = - A089801(n). (End)
Sum_{k=1..n} abs(a(k)) ~ (4/3)*sqrt(n). - Amiram Eldar, Jan 27 2024

A089807 Expansion of Jacobi theta function (3theta_3(q^9)-theta_3(q))/2.

Original entry on oeis.org

1, -1, 0, 0, -1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This is an example of the quintuple product identity in the form f(a*b^4, a^2/b) - (a/b) * f(a^4*b, b^2/a) = f(-a*b, -a^2*b^2) * f(-a/b, -b^2) / f(a, b) where a = x^5, b = x. - Michael Somos, Jul 12 2012
Number 11 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - q - q^4 + 2*q^9 - q^16 - q^25 + 2*q^36 - q^49 - q^64 + 2*q^81 + ...
		

Crossrefs

Related to the 14 primitive eta-products which are holomorphic modular forms of weight 1/2: A000122, A002448, A010054, A010815, A080995, A089801, A089802, this sequence, A089810, A089812, A106459, A121373, A133985, A133988. - Seiichi Manyama, May 15 2017

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, Pi/3, q], {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ (3 EllipticTheta[ 3, 0, q^9] - EllipticTheta[ 3, 0, q])/2, {q, 0, n}]; (* Michael Somos, Jul 12 2012 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q^3, q^6] EllipticTheta[ 2, 0, Sqrt[ -q]] / (2 (-q)^(1/8)), {q, 0, n}] (* Michael Somos, Jul 12 2012 *);
  • PARI
    {a(n) = if( n<1, n==0, issquare(n) * (3*(n%3==0) - 1))}; /* Michael Somos, Nov 05 2005 */

Formula

a(n) = -b(n) where b() is multiplicative with b(3^e) = -2(1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 otherwise.
From Michael Somos, Nov 05 2005: (Start)
Expansion of eta(q) * eta(q^4) * eta(q^6)^2 / (eta(q^2) * eta(q^3) * eta(q^12)) in powers of q.
Euler transform of period 12 sequence [ -1, 0, 0, -1, -1, -1, -1, -1, 0, 0, -1, -1, ...].
G.f.: (Sum_{k in Z} 3 * x^((3*k)^2) - x^(k^2)) / 2 = Product_{k>0} (1 - x^k) / ((1 - x^(12*k - 2)) * (1 - x^(12*k - 3)) * (1 - x^(12*k - 9)) * (1 - x^(12*k - 10))). (End)
Expansion of Jacobi theta function theta_3(Pi/3, q) in powers of q. - Michael Somos, Jan 26 2006
Expansion of chi(q^3) * psi(-q) in powers of q where chi(), psi() are Ramanujan theta functions. - Michael Somos, May 19 2007
Expansion of f(x*w, x/w) in powers of x where w is a primitive cube root of unity and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 17 2007
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 18^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089801.
a(n) = (-1)^n * A089810(n). - Michael Somos, Jan 20 2012
For n > 0, a(n) = (floor(sqrt(n))-floor(sqrt(n-1)))*(2-4*sin(floor(sqrt(n))*Pi/3)^2). - Mikael Aaltonen, Jan 17 2015
Sum_{k=1..n} abs(a(k)) ~ (4/3)*sqrt(n). - Amiram Eldar, Jan 27 2024

A287325 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2 + j^2).

Original entry on oeis.org

1, 1, -2, 1, -1, 0, 1, -1, -1, 0, 1, -1, 0, 0, 2, 1, -1, 0, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, 1, -1, 0, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0, 1, 1, 0, 1, -1, 0, 0, 0, -1, 0, 0, 0, -2, 1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, -1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, -1, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 13 2017

Keywords

Examples

			Square array begins:
   1,   1,   1,   1,   1,   1, ...
  -2,  -1,  -1,  -1,  -1,  -1, ...
   0,  -1,   0,   0,   0,   0, ...
   0,   0,  -1,   0,   0,   0, ...
   2,   0,   0,  -1,   0,   0, ...
   0,   1,   0,   0,  -1,   0, ...
		

Crossrefs

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[Sum[(-1)^i x^(k i (i - 1)/2 + i^2), {i, -n, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[Product[(1 - x^((k + 2) i)) (1 - x^((k + 2) i - 1)) (1 - x^((k + 2) i - k - 1)), {i, 1, n}], {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten
    Table[Function[k, SeriesCoefficient[(x^(2 + k) QPochhammer[1/x, x^(2 + k)] QPochhammer[x^(-1 - k), x^(2 + k)] QPochhammer[x^(2 + k), x^(2 + k)])/((-1 + x) (-1 + x^(1 + k))), {x, 0, n}]][j - n], {j, 0, 13}, {n, 0, j}] // Flatten

Formula

G.f. of column 0: Sum_{j=-inf..inf} (-1)^j*x^A000290(j) = Product_{i>=1} (1 + x^i)/(1 - x^i) (convolution inverse of A015128).
G.f. of column 1: Sum_{j=-inf..inf} (-1)^j*x^A000326(j) = Product_{i>=1} (1 - x^i) (convolution inverse of A000041).
G.f. of column 2: Sum_{j=-inf..inf} (-1)^j*x^A000384(j) = Product_{i>=1} (1 - x^(2*i))/(1 + x^(2*i-1)) (convolution inverse of A006950).
G.f. of column 3: Sum_{j=-inf..inf} (-1)^j*x^A000566(j) = Product_{i>=1} (1 - x^(5*i))*(1 - x^(5*i-1))*(1 - x^(5*i-4)) (convolution inverse of A036820).
G.f. of column 4: Sum_{j=-inf..inf} (-1)^j*x^A000567(j) = Product_{i>=1} (1 - x^(6*i))*(1 - x^(6*i-1))*(1 - x^(6*i-5)) (convolution inverse of A195848).
G.f. of column 5: Sum_{j=-inf..inf} (-1)^j*x^A001106(j) = Product_{i>=1} (1 - x^(7*i))*(1 - x^(7*i-1))*(1 - x^(7*i-6)) (convolution inverse of A195849).
G.f. of column 6: Sum_{j=-inf..inf} (-1)^j*x^A001107(j) = Product_{i>=1} (1 - x^(8*i))*(1 - x^(8*i-1))*(1 - x^(8*i-7)) (convolution inverse of A195850).
G.f. of column 7: Sum_{j=-inf..inf} (-1)^j*x^A051682(j) = Product_{i>=1} (1 - x^(9*i))*(1 - x^(9*i-1))*(1 - x^(9*i-8)) (convolution inverse of A195851).
G.f. of column 8: Sum_{j=-inf..inf} (-1)^j*x^A051624(j) = Product_{i>=1} (1 - x^(10*i))*(1 - x^(10*i-1))*(1 - x^(10*i-9)) (convolution inverse of A195852).
G.f. of column 9: Sum_{j=-inf..inf} (-1)^j*x^A051865(j) = Product_{i>=1} (1 - x^(11*i))*(1 - x^(11*i-1))*(1 - x^(11*i-10)) (convolution inverse of A196933).
G.f. of column k: Sum_{j=-inf..inf} (-1)^j*x^(k*j*(j-1)/2+j^2) = Product_{i>=1} (1 - x^((k+2)*i))*(1 - x^((k+2)*i-1))*(1 - x^((k+2)*i-k-1)).
Showing 1-9 of 9 results.