cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A195848 Expansion of 1 / f(-x^1, -x^5) in powers of x where f() is Ramanujan's two-variable theta function.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 5, 7, 10, 12, 13, 14, 16, 21, 27, 32, 35, 38, 44, 54, 67, 78, 86, 94, 107, 128, 153, 176, 194, 213, 241, 282, 331, 376, 415, 456, 512, 590, 680, 767, 845, 928, 1037, 1180, 1345, 1506, 1657, 1818, 2020, 2278, 2570, 2862, 3142, 3442
Offset: 0

Views

Author

Omar E. Pol, Sep 24 2011

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also column 4 of A195825, therefore this sequence contains two plateaus: [1, 1, 1, 1, 1], [4, 4, 4]. For more information see A210843 and other sequences of this family. - Omar E. Pol, Jun 26 2012
The number of partitions of n into parts congruent to 0, 1 or 5 ( mod 6 ). - Peter Bala, Dec 09 2020

Examples

			G.f. = 1 + x + x^2 + x^3 + x^4 + 2*x^5 + 3*x^6 + 4*x^7 + 4*x^8 + 4*x^9 + 5*x^10 + ...
G.f. = 1/q + q^2 + q^5 + q^8 + q^11 + 2*q^14 + 3*q^17 + 4*q^20 + 4*q^23 + 4*q^26 + ...
		

Crossrefs

Column 1 of triangle A195838. Also 1 together with the row sums of triangle A195838. Column 4 of array A195825.
Cf. A089802.

Programs

  • Maple
    A001082 := proc(n)
            if type(n,'even') then
                    n*(3*n-4)/4 ;
            else
                    (n-1)*(3*n+1)/4 ;
            end if;
    end proc:
    A195838 := proc(n,k)
            option remember;
            local ks,a,j ;
            if A001082(k+1) > n then
                    0 ;
            elif n <= 5 then
                    return 1;
            elif k = 1 then
                    a := 0 ;
                    for j from 1 do
                            if A001082(j+1) <= n-1 then
                                    a := a+procname(n-1,j) ;
                            else
                                    break;
                            end if;
                    end do;
                    return a;
            else
                    ks := A001082(k+1) ;
                    (-1)^floor((k-1)/2)*procname(n-ks+1,1) ;
            end if;
    end proc:
    A195848 := proc(n)
            A195838(n+1,1) ;
    end proc:
    seq(A195848(n),n=0..60) ; # R. J. Mathar, Oct 07 2011
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^2] QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]^2), {x, 0, n}]; (* Michael Somos, Oct 18 2014 *)
    a[ n_] := SeriesCoefficient[ 2 q^(3/8) / (QPochhammer[ q, q^2] EllipticTheta[ 2, 0, q^(3/2)]), {q, 0, n}]; (* Michael Somos, Oct 18 2014 *)
    nmax = 60; CoefficientList[Series[Product[(1+x^k) / ((1+x^(3*k)) * (1-x^(6*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Nov 08 2015 *)
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)^2), n))}; /* Michael Somos, Jun 07 2012 */
    From Omar E. Pol, Jun 10 2012: (Start)
    (GW-BASIC)' A program with two A-numbers:
    10 Dim A001082(100), A057077(100), a(100): a(0)=1
    20 For n = 1 to 58: For j = 1 to n
    30 If A001082(j) <= n then a(n) = a(n) + A057077(j-1)*a(n - A001082(j))
    40 Next j: Print a(n-1);: Next n (End)

Formula

Expansion of 1 / (psi(x^3) * chi(-x)) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Jun 07 2012
Expansion of q^(1/3) * eta(q^2) * eta(q^3) / (eta(q) * eta(q^6)^2) in powers of q. - Michael Somos, Jun 07 2012
Euler transform of period 6 sequence [ 1, 0, 0, 0, 1, 1, ...]. - Michael Somos, Oct 18 2014
Convolution inverse of A089802. - Michael Somos, Oct 18 2014
a(n) ~ exp(Pi*sqrt(n/3))/(4*n). - Vaclav Kotesovec, Nov 08 2015
a(n) = (1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
From Peter Bala, Dec 09 2020: (Start)
O.g.f.: 1/( Product_{n >= 1} (1 - x^(6*n-5))*(1 - x^(6*n-1))*(1 - x^(6*n)) ).
a(n) = a(n-1) + a(n-5) - a(n-8) - a(n-16) + + - - ... (with the convention a(n) = 0 for negative n), where 1, 5, 8, 16, ... is the sequence of generalized octagonal numbers A001082. (End)

Extensions

New sequence name from Michael Somos, Oct 18 2014

A113184 Absolute difference between sum of odd divisors of n and sum of even divisors of n.

Original entry on oeis.org

1, 1, 4, 5, 6, 4, 8, 13, 13, 6, 12, 20, 14, 8, 24, 29, 18, 13, 20, 30, 32, 12, 24, 52, 31, 14, 40, 40, 30, 24, 32, 61, 48, 18, 48, 65, 38, 20, 56, 78, 42, 32, 44, 60, 78, 24, 48, 116, 57, 31, 72, 70, 54, 40, 72, 104, 80, 30, 60, 120, 62, 32, 104, 125, 84, 48, 68, 90, 96, 48, 72
Offset: 1

Views

Author

Michael Somos, Oct 17 2005

Keywords

Comments

The generating function equals 1/8 at q = Lambda = 0.1076539192... (A072558) the "One-Ninth" constant. - Michael Somos, Jul 21 2006
Absolute value of A002129. - John W. Layman, Sep 27 2012
The Möbius transform is 1, 0, 3, 4, 5, 0, 7, 8, 9, 0, 11, 12, 13, 0, 15, 16, 17, 0, 19, 20, 21, 0, 23, 24, 25, 0, 27, ... - R. J. Mathar, Jan 08 2013

Examples

			From _Peter Bala_, Dec 11 2020: (Start)
n = 15: n is a triangular number, so e(n) = (-1)^(n+1)*n = 15 and a(15) = 15 + a(14) + a(12) - a(9) - a(5) =  15 + 8 + 20 - 13 - 6 = 24;
n = 16: n is a not triangular number, so e(n) = 0 and a(16) = a(15) + a(13) - a(10) - a(6) + a(1) =  24 + 14 - 6 - 4 + 1 = 29. (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

Crossrefs

Cf. A002129(n) = -(-1)^n a(n).

Programs

  • Mathematica
    f[n_]:=Module[{dn=Divisors[n],odn,edn},odn=Select[dn,OddQ];edn=Select[dn,EvenQ];Abs[Total[odn]-Total[edn]]]
    f/@Range[80]  (* Harvey P. Dale, Feb 25 2011 *)
    max = 80; s = (1/x)*Sum[k*x^k/(1 - (-x)^k), {k, 1, max}] + O[x]^max; CoefficientList[s, x] (* Jean-François Alcover, Dec 04 2015 *)
    f[p_, e_] := If[p == 2, 2^(e + 1) - 3, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    a(n)=if(n<1, 0, (-1)^n*sumdiv(n,d,(-1)^d*d))
    
  • PARI
    {a(n)=local(A,p,e); if(n<1, 0, A=factor(n); prod(k=1,matsize(A)[1], if(p=A[k,1], e=A[k,2]; if(p==2, 2^(e+1)-3, (p^(e+1)-1)/(p-1)))))}

Formula

Multiplicative with a(2^e) = 2^(e+1)-3 if e>0, a(p^e) = (p^(e+1)-1)/(p-1) if p>2.
G.f.: Sum_{k>0} -(-x)^k/(1+(-x)^k)^2 = Sum_{k>0} k*x^k/(1-(-x)^k).
Expansion of (1-(2/Pi)^2(2E(k)-K(k))K(k))/8 in powers of nome q where E(k) and K(k) are complete elliptic integrals and q=exp(-Pi*K(k')/K(k)). - Michael Somos, Jul 21 2006
Bisection: a(2*k-1) = A000203(2*k-1), a(2*k) = A146076(2*k) - A000593(2*k), k >= 1. See the Hardy reference where a(n) = sigma^*1(n). - _Wolfdieter Lang, Jan 07 2017
From Peter Bala, Dec 11 2020: (Start)
a(n) = Sum_{d | n, d != 2 (mod 4)} d.
O.g.f.: Sum_{k >= 1, k != 2 (mod 4)} k*x^k/(1 - x^k). Cf. A284362.
Define a(n) = 0 for n < 1. Then a(n) = e(n) + a(n-1) + a(n-3) - a(n-6) - a(n-10) + + - -, where [1, 3, 6, 10, ...] is the sequence of triangular numbers A000217, and e(n) = (-1)^(n+1)*n if n is a triangular number; otherwise e(n) = 0. Examples of this recurrence are given below. (End)
Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s) * zeta(s-1) * (1+2^(3-3*s)) / (1+2^(1-s)). - Werner Schulte, Jan 23 2021
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 16. - Vaclav Kotesovec, Aug 20 2021

Extensions

Name corrected by Wolfdieter Lang, Jan 07 2017

A089802 Expansion of q^(-1/3) * (theta_4(q^3) - theta_4(q^(1/3))) / 2 in powers of q.

Original entry on oeis.org

1, -1, 0, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Eric W. Weisstein, Nov 12 2003

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number 10 of the 14 primitive eta-products which are holomorphic modular forms of weight 1/2 listed by D. Zagier on page 30 of "The 1-2-3 of Modular Forms". - Michael Somos, May 04 2016

Examples

			G.f. = 1 - x - x^5 + x^8 + x^16 - x^21 - x^33 + x^40 + x^56 - x^65 - x^85 + ...
G.f. = q - q^4 - q^16 + q^25 + q^49 - q^64 - q^100 + q^121 + q^169 - q^196 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, x^3] - EllipticTheta[ 4, 0, x^(1/3)]) / (2 x^(1/3)), {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] EllipticTheta[ 2, 0, x^(3/2)] / (2 x^(3/8)), {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2] QPochhammer[ -x^3, x^3] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^6] QPochhammer[ x^5, x^6] QPochhammer[ x^6], {x, 0, n}]; (* Michael Somos, Jun 30 2015 *)
    a[ n_] := (-1)^n Sign @ SquaresR[ 1, 3 n + 1]; (* Michael Somos, Jun 30 2015 *)
  • PARI
    {a(n) = (-1)^n * issquare(3*n + 1)}; /* Michael Somos, Apr 12 2005 */

Formula

Expansion of q^(-1/3) * (eta(q) * eta(q^6)^2) / (eta(q^2) * eta(q^3)) in powers of q. - Michael Somos, Apr 12 2005
Expansion of chi(-x) * psi(x^3) in powers of x where psi(), chi() are Ramanujan theta functions. - Michael Somos, Dec 23 2011
Expansion of f(-x, -x^5) in powers of x, where f(, ) is Ramanujan's general theta function.
a(n) = b(3*n + 1) where b() is multiplicative with b(3^e) = 0^e, b(2^e) = - (1 + (-1)^e) / 2 if e>0, b(p^e) = (1 + (-1)^e) / 2 if p>3.
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = 8^(1/2) (t/i)^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A089812. - Michael Somos, Dec 23 2011
Euler transform of period 6 sequence [-1, 0, 0, 0, -1, -1, ...]. - Michael Somos, Apr 12 2005
abs(a(n)) is the characteristic function of A001082. - Michael Somos, Oct 31 2005
G.f.: Sum_{k in Z} (-1)^k * x^((3*k^2 - 2*k)) = Product_{k>0} (1 - x^(6*k)) * (1 - x^(6*k - 1)) * (1 - x^(6*k - 5)). - Michael Somos, Oct 31 2005
A002448(3*n + 1) = -2 * a(n). - Michael Somos, Jul 07 2006
a(n) = (-1)^n * A089801(n).
a(n) = -(1/n)*Sum_{k=1..n} A284362(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

Extensions

Corrected by N. J. A. Sloane, Nov 05 2005

A284363 a(n) = Sum_{d|n, d = 0, 1, or 6 mod 7} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 8, 9, 1, 1, 1, 7, 14, 22, 16, 9, 1, 7, 1, 21, 29, 23, 1, 15, 1, 14, 28, 50, 30, 22, 1, 9, 1, 35, 43, 43, 1, 1, 14, 29, 42, 91, 44, 23, 16, 1, 1, 63, 57, 51, 1, 14, 1, 34, 56, 114, 58, 30, 1, 42, 1, 63, 92, 73, 14, 29, 1, 35, 70, 127, 72, 51, 1, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. A232714.
Cf. Sum_{d|n, d = 0, 1, or k-1 mod k} d: A000203 (k=3), A284361 (k=5), A284362 (k=6), this sequence (k=7), A284372 (k=12).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 7] <2 || Mod[d, 7]==6, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 25 2017 *)
  • PARI
    a(n) = sumdiv(n, d, ((d + 1) % 7 < 3) * d); \\ Amiram Eldar, Apr 12 2024

Formula

Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/28 = 0.352485... . - Amiram Eldar, Apr 12 2024

A284361 a(n) = Sum_{d|n, d = 0, 1, or 4 mod 5} d.

Original entry on oeis.org

1, 1, 1, 5, 6, 7, 1, 5, 10, 16, 12, 11, 1, 15, 21, 21, 1, 16, 20, 40, 22, 12, 1, 35, 31, 27, 10, 19, 30, 67, 32, 21, 12, 35, 41, 56, 1, 20, 40, 80, 42, 42, 1, 60, 75, 47, 1, 51, 50, 91, 52, 31, 1, 70, 72, 75, 20, 30, 60, 151, 62, 32, 31, 85, 71, 84, 1, 39, 70, 135
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. A036820 (1/f(-x, -x^4)), A113429 (f(-x, -x^4)), A102753.
Cf. Sum_{d|n, d = 0, 1, or k-1 mod k} d: A000203 (k=3), this sequence (k=5), A284362 (k=6), A284363 (k=7), A284372 (k=12).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 5]<2 || Mod[d, 5]==4, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[Select[Divisors[n],MemberQ[{0,1,4},Mod[#,5]]&]],{n,70}] (* Harvey P. Dale, Aug 02 2020 *)
  • PARI
    a(n) = sumdiv(n, d, ((d + 1) % 5 < 3) * d); \\ Amiram Eldar, Apr 12 2024

Formula

Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/20 = A102753 / 10 = 0.4934802... . - Amiram Eldar, Apr 12 2024

A284372 a(n) = Sum_{d|n, d = 0, 1, or 11 mod 12} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 13, 14, 1, 1, 1, 1, 1, 1, 1, 1, 12, 24, 37, 26, 14, 1, 1, 1, 1, 1, 1, 12, 1, 36, 49, 38, 1, 14, 1, 1, 1, 1, 12, 1, 24, 48, 85, 50, 26, 1, 14, 1, 1, 12, 1, 1, 1, 60, 73, 62, 1, 1, 1, 14, 12, 1, 1, 24, 36, 72, 145, 74, 38, 26, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Examples

			From _Peter Bala_, Dec 11 2020: (Start)
n = 24: n is not of the form m*(6*m +- 5), so e(n) = 0 and a(24) = a(23) + a(13) - a(10)  = 24 + 14 - 1  = 37;
n = 39: n = m*(6*m - 5) for m = 3, so e(n) = 39 and a(39) = 39 + a(38) + a(28) - a(25) - a(5) = 39 + 1 + 1 - 26 - 1 = 14;
n = 76: n = m*(6*m - 5) for m = 4, so e(n) = -76 and a(4) = -76 + a(75) + a(65) - a(62) - a(42) + a(37) + a(7) = -76 + 26 + 14  - 1 - 1 + 38 + 1 = 1. (End)
		

Crossrefs

Cf. A210964 (1/f(-x, -x^11)), A245058.
Cf. Sum_{d|n, d = 0, 1, or k-1 mod k} d: A000203 (k=3), A113184(k=4), A284361 (k=5), A284362 (k=6), A284363 (k=7), this sequence (k=12).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 12]<2 || Mod[d, 12]==11, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 25 2017 *)
    sd12[n_]:=Total[Select[Divisors[n],MemberQ[{0,1,11},Mod[#,12]]&]]; Array[sd12,80] (* Harvey P. Dale, Aug 29 2024 *)
  • PARI
    a(n) = sumdiv(n, d, ((d + 1) % 12 < 3) * d); \\ Amiram Eldar, Apr 12 2024

Formula

From Peter Bala, Dec 11 2020: (Start)
O.g.f.: Sum_{k >= 1, k == 0, 1 or 11 (mod 12)} k*x^k/(1 - x^k).
Define a(n) = 0 for n < 1. Then a(n) = e(n) + a(n-1) + a(n-11) - a(n-14) - a(n-34) + + - -, where [1, 11, 14, 34, ...] is the sequence of generalized 14-gonal numbers A195818, and e(n) = (-1)^(m+1)*n if n is a generalized 14-gonal number of the form m*(6*m+-5); otherwise e(n) = 0. Examples of this recurrence are given below. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/48 = -A245058 = 0.205616... . - Amiram Eldar, Apr 12 2024
Showing 1-6 of 6 results.