cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A224340 G.f.: exp( Sum_{n>=1} A113184(n^2)*x^n/n ), where A113184(n) = difference between sum of odd divisors of n and sum of even divisors of n.

Original entry on oeis.org

1, 1, 3, 7, 16, 30, 64, 120, 236, 434, 805, 1445, 2614, 4568, 8003, 13783, 23616, 39886, 67124, 111652, 184862, 303282, 495001, 801939, 1292968, 2070628, 3300796, 5232112, 8256081, 12961543, 20264168, 31535316, 48882592, 75455902, 116041910, 177775284, 271401683
Offset: 0

Views

Author

Paul D. Hanna, Apr 03 2013

Keywords

Comments

Compare to: exp(-Sum_{n>=1} A113184(n)*x^n/n ) = Sum_{n>=1} (-x)^(n*(n+1)/2).

Examples

			L.g.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 +...
where
log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 +...+ A113184(n^2)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(k=1,n,sumdiv(k^2, d, (-1)^d*d)*(-x)^k/k)+x*O(x^n)),n)}
    for(n=0,40,print1(a(n),", "))

Formula

Logarithmic derivative yields A224339.

A348585 Numbers k such that A113184(k) = A113184(k+1).

Original entry on oeis.org

1, 8, 27, 375, 459, 620, 1652, 2871, 3451, 3956, 8055, 8636, 8907, 9844, 10647, 12104, 19491, 20155, 27089, 27643, 38180, 41547, 48364, 62379, 74875, 79304, 83780, 90692, 115289, 139460, 146828, 233729, 291819, 297987, 324423, 338547, 365660, 377540, 392635, 403575
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2021

Keywords

Comments

Equivalently, numbers k such that A002129(k) = -A002129(k+1).

Examples

			1 is a term since A113184(1) = A113184(2) = 1.
8 is a term since A113184(8) = A113184(9) = 13.
		

Crossrefs

Similar sequences: A002961, A206368, A333261.

Programs

  • Mathematica
    f[p_, e_] := If[p == 2, 2^(e + 1)-3, (p^(e + 1) - 1)/(p - 1)]; s[1] = 1; s[n_] := Times @@ f @@@ FactorInteger[n]; Select[Range[10^5], s[#] == s[# + 1] &]
    f[n_]:=Module[{dn=Divisors[n],odn,edn},odn=Select[dn,OddQ];edn=Select[dn,EvenQ];Abs[Total[odn]-Total[edn]]]; SequencePosition[f/@Range[404000],{x_,x_}][[;;,1]] (* Harvey P. Dale, Apr 28 2025 *)
  • PARI
    f(n) = -sumdiv(n, d, (-1)^d*d); \\ A002129
    isok(k) = f(k) + f(k+1) == 0; \\ Michel Marcus, Oct 24 2021

A000593 Sum of odd divisors of n.

Original entry on oeis.org

1, 1, 4, 1, 6, 4, 8, 1, 13, 6, 12, 4, 14, 8, 24, 1, 18, 13, 20, 6, 32, 12, 24, 4, 31, 14, 40, 8, 30, 24, 32, 1, 48, 18, 48, 13, 38, 20, 56, 6, 42, 32, 44, 12, 78, 24, 48, 4, 57, 31, 72, 14, 54, 40, 72, 8, 80, 30, 60, 24, 62, 32, 104, 1, 84, 48, 68, 18, 96, 48, 72, 13, 74, 38, 124
Offset: 1

Views

Author

Keywords

Comments

Denoted by Delta(n) or Delta_1(n) in Glaisher 1907. - Michael Somos, May 17 2013
A069289(n) <= a(n). - Reinhard Zumkeller, Apr 05 2015
A000203, A001227 and this sequence have the same parity: A053866. - Omar E. Pol, May 14 2016
For the g.f.s given below by Somos Oct 29 2005, Jovovic, Oct 11 2002 and Arndt, Nov 09 2010, see the Hardy-Wright reference, proof of Theorem 382, p. 312, with x^2 replaced by x. - Wolfdieter Lang, Dec 11 2016
a(n) is also the total number of parts in all partitions of n into an odd number of equal parts. - Omar E. Pol, Jun 04 2017
It seems that a(n) divides A000203(n) for every n. - Ivan N. Ianakiev, Nov 25 2017 [Yes, see the formula dated Dec 14 2017].
Also, alternating row sums of A126988. - Omar E. Pol, Feb 11 2018
Where a(n) shows the number of equivalence classes of Hurwitz quaternions with norm n (equivalence defined by right multiplication with one of the 24 Hurwitz units as in A055672), A046897(n) seems to give the number of equivalence classes of Lipschitz quaternions with norm n (equivalence defined by right multiplication with one of the 8 Lipschitz units). - R. J. Mathar, Aug 03 2025

Examples

			G.f. = x + x^2 + 4*x^3 + x^4 + 6*x^5 + 4*x^6 + 8*x^7 + x^8 + 13*x^9 + 6*x^10 + 12*x^11 + ...
		

References

  • Jean-Marie De Koninck and Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 496, pp. 69-246, Ellipses, Paris, 2004.
  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 132.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth Edition, Clarendon Press, Oxford, 2003, p. 312.
  • Friedrich Hirzebruch, Thomas Berger, and Rainer Jung, Manifolds and Modular Forms, Vieweg, 1994, p. 133.
  • John Riordan, Combinatorial Identities, Wiley, 1968, p. 187.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000005, A000203, A000265, A001227, A006128, A050999, A051000, A051001, A051002, A065442, A078471 (partial sums), A069289, A247837 (subset of the primes).

Programs

  • Haskell
    a000593 = sum . a182469_row  -- Reinhard Zumkeller, May 01 2012, Jul 25 2011
    
  • Magma
    m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&+[j*x^j/(1+x^j): j in [1..2*m]])  )); // G. C. Greubel, Nov 07 2018
    
  • Magma
    [&+[d:d in Divisors(n)|IsOdd(d)]:n in [1..75]]; // Marius A. Burtea, Aug 12 2019
    
  • Maple
    A000593 := proc(n) local d,s; s := 0; for d from 1 by 2 to n do if n mod d = 0 then s := s+d; fi; od; RETURN(s); end;
  • Mathematica
    Table[a := Select[Divisors[n], OddQ[ # ]&]; Sum[a[[i]], {i, 1, Length[a]}], {n, 1, 60}] (* Stefan Steinerberger, Apr 01 2006 *)
    f[n_] := Plus @@ Select[ Divisors@ n, OddQ]; Array[f, 75] (* Robert G. Wilson v, Jun 19 2011 *)
    a[ n_] := If[ n < 1, 0, Sum[ -(-1)^d n / d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, -(-1)^# n / # &]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Sum[ Mod[ d, 2] d, {d, Divisors[ n]}]]; (* Michael Somos, May 17 2013 *)
    a[ n_] := If[ n < 1, 0, Times @@ (If[ # < 3, 1, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger @ n)]; (* Michael Somos, Aug 15 2015 *)
    Array[Total[Divisors@ # /. d_ /; EvenQ@ d -> Nothing] &, {75}] (* Michael De Vlieger, Apr 07 2016 *)
    Table[SeriesCoefficient[n Log[QPochhammer[-1, x]], {x, 0, n}], {n, 1, 75}] (* Vladimir Reshetnikov, Nov 21 2016 *)
    Table[DivisorSum[n,#&,OddQ[#]&],{n,80}] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    {a(n) = if( n<1, 0, sumdiv( n, d, (-1)^(d+1) * n/d))}; /* Michael Somos, May 29 2005 */
    
  • PARI
    N=66; x='x+O('x^N); Vec( serconvol( log(prod(j=1,N,1+x^j)), sum(j=1,N,j*x^j)))  /* Joerg Arndt, May 03 2008, edited by M. F. Hasler, Jun 19 2011 */
    
  • PARI
    s=vector(100);for(n=1,100,s[n]=sumdiv(n,d,d*(d%2)));s /* Zak Seidov, Sep 24 2011*/
    
  • PARI
    a(n)=sigma(n>>valuation(n,2)) \\ Charles R Greathouse IV, Sep 09 2014
    
  • Python
    from math import prod
    from sympy import factorint
    def A000593(n): return prod((p**(e+1)-1)//(p-1) for p, e in factorint(n).items() if p > 2) # Chai Wah Wu, Sep 09 2021
  • Sage
    [sum(k for k in divisors(n) if k % 2) for n in (1..75)] # Giuseppe Coppoletta, Nov 02 2016
    

Formula

Inverse Moebius Transform of [0, 1, 0, 3, 0, 5, ...].
Dirichlet g.f.: zeta(s)*zeta(s-1)*(1-2^(1-s)).
a(2*n) = A000203(2*n)-2*A000203(n), a(2*n+1) = A000203(2*n+1). - Henry Bottomley, May 16 2000
a(2*n) = A054785(2*n) - A000203(2*n). - Reinhard Zumkeller, Apr 23 2008
Multiplicative with a(p^e) = 1 if p = 2, (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Aug 01 2001
a(n) = Sum_{d divides n} (-1)^(d+1)*n/d, Dirichlet convolution of A062157 with A000027. - Vladeta Jovovic, Sep 06 2002
Sum_{k=1..n} a(k) is asymptotic to c*n^2 where c=Pi^2/24. - Benoit Cloitre, Dec 29 2002
G.f.: Sum_{n>0} n*x^n/(1+x^n). - Vladeta Jovovic, Oct 11 2002
G.f.: (theta_3(q)^4 + theta_2(q)^4 -1)/24.
G.f.: Sum_{k>0} -(-x)^k / (1 - x^k)^2. - Michael Somos, Oct 29 2005
a(n) = A050449(n)+A050452(n); a(A000079(n))=1; a(A005408(n))=A000203(A005408(n)). - Reinhard Zumkeller, Apr 18 2006
From Joerg Arndt, Nov 09 2010: (Start)
G.f.: Sum_{n>=1} (2*n-1) * q^(2*n-1) / (1-q^(2*n-1)).
G.f.: deriv(log(P)) = deriv(P)/P where P = Product_{n>=1} (1 + q^n). (End)
Dirichlet convolution of A000203 with [1,-2,0,0,0,...]. - R. J. Mathar, Jun 28 2011
a(n) = Sum_{k = 1..A001227(n)} A182469(n,k). - Reinhard Zumkeller, May 01 2012
G.f.: -1/Q(0), where Q(k) = (x-1)*(1-x^(2*k+1)) + x*(-1 +x^(k+1))^4/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Apr 30 2013
a(n) = Sum_{k=1..n} k*A000009(k)*A081362(n-k). - Mircea Merca, Feb 26 2014
a(n) = A000203(n) - A146076(n). - Omar E. Pol, Apr 05 2016
a(2*n) = a(n). - Giuseppe Coppoletta, Nov 02 2016
From Wolfdieter Lang, Dec 11 2016: (Start)
G.f.: Sum_{n>=1} x^n*(1+x^(2*n))/(1-x^(2*n))^2, from the second to last equation of the proof to Theorem 382 (with x^2 -> x) of the Hardy-Wright reference, p. 312.
a(n) = Sum_{d|n} (-d)*(-1)^(n/d), commutating factors of the D.g.f. given above by Jovovic, Oct 11 2002. See also the a(n) version given by Jovovic, Sep 06 2002. (End)
a(n) = A000203(n)/A038712(n). - Omar E. Pol, Dec 14 2017
a(n) = A000203(n)/(2^(1 + (A183063(n)/A001227(n))) - 1). - Omar E. Pol, Nov 06 2018
a(n) = A000203(2n) - 2*A000203(n). - Ridouane Oudra, Aug 28 2019
From Peter Bala, Jan 04 2021: (Start)
a(n) = (2/3)*A002131(n) + (1/3)*A002129(n) = (2/3)*A002131(n) + (-1)^(n+1)*(1/3)*A113184(n).
a(n) = A002131(n) - (1/2)*A146076; a(n) = 2*A002131(n) - A000203(n). (End)
a(n) = A000203(A000265(n)) - John Keith, Aug 30 2021
Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k)/A000203(k) = A065442 - 1 = 0.60669... . - Amiram Eldar, Dec 14 2024

A002129 Generalized sum of divisors function: excess of sum of odd divisors of n over sum of even divisors of n.

Original entry on oeis.org

1, -1, 4, -5, 6, -4, 8, -13, 13, -6, 12, -20, 14, -8, 24, -29, 18, -13, 20, -30, 32, -12, 24, -52, 31, -14, 40, -40, 30, -24, 32, -61, 48, -18, 48, -65, 38, -20, 56, -78, 42, -32, 44, -60, 78, -24, 48, -116, 57, -31, 72, -70, 54, -40, 72, -104, 80, -30, 60, -120, 62, -32, 104, -125
Offset: 1

Views

Author

Keywords

Comments

Glaisher calls this zeta(n) or zeta_1(n). - N. J. A. Sloane, Nov 24 2018
Coefficients in expansion of Sum_{n >= 1} x^n/(1+x^n)^2 = Sum_{n >= 1} (-1)^(n-1)*n*x^n/(1-x^n).
Unsigned sequence is A113184. - Peter Bala, Dec 14 2020

Examples

			a(28) = 40 because the sum of the even divisors of 28 (2, 4, 14 and 28) = 48 and the sum of the odd divisors of 28 (1 and 7) = 8, their absolute difference being 40.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 162, #16, (6), 3rd formula.
  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 259-262.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A060044.
a(2^n) = -A036563(n+1). a(3^n) = A003462(n+1).
First differences of -A024919(n).

Programs

  • Maple
    A002129 := proc(n) -add((-1)^d*d,d=numtheory[divisors](n)) ; end proc: # R. J. Mathar, Mar 05 2011
  • Mathematica
    f[n_] := Block[{c = Divisors@ n}, Plus @@ Select[c, EvenQ] - Plus @@ Select[c, OddQ]]; Array[f, 64] (* Robert G. Wilson v, Mar 04 2011 *)
    a[n_] := DivisorSum[n, -(-1)^#*#&]; Array[a, 80] (* Jean-François Alcover, Dec 01 2015 *)
    f[p_, e_] := If[p == 2, 3 - 2^(e + 1), (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]);  Array[a, 64] (* Amiram Eldar, Jul 20 2019 *)
  • PARI
    a(n)=if(n<1,0,-sumdiv(n,d,(-1)^d*d))
    
  • PARI
    {a(n)=n*polcoeff(log(sum(k=0,(sqrtint(8*n+1)-1)\2,x^(k*(k+1)/2))+x*O(x^n)),n)} \\ Paul D. Hanna, Jun 28 2008

Formula

Multiplicative with a(p^e) = 3-2^(e+1) if p = 2; (p^(e+1)-1)/(p-1) if p > 2. - David W. Wilson, Sep 01 2001
G.f.: Sum_{n>=1} n*x^n*(1-3*x^n)/(1-x^(2*n)). - Vladeta Jovovic, Oct 15 2002
L.g.f.: Sum_{n>=1} a(n)*x^n/n = log[ Sum_{n>=0} x^(n(n+1)/2) ], the log of the g.f. of A010054. - Paul D. Hanna, Jun 28 2008
Dirichlet g.f. zeta(s)*zeta(s-1)*(1-4/2^s). Dirichlet convolution of A000203 and the quasi-finite (1,-4,0,0,0,...). - R. J. Mathar, Mar 04 2011
a(n) = A000593(n)-A146076(n). - R. J. Mathar, Mar 05 2011
a(n) = Sum_{j = 1..n} Sum_{k = 1..j} (-1)^(j+1)*cos(2*k*n*Pi/j). - Peter Bala, Aug 24 2022
G.f.: Sum_{n>=1} n*(-x)^(n-1)/(1-x^n). - Mamuka Jibladze, Jun 03 2025

Extensions

Better description and more terms from Robert G. Wilson v, Dec 14 2000
More terms from N. J. A. Sloane, Mar 19 2001

A279396 Triangle read by rows T(n, m) = sigma^*(n-m)(m), n >= 1, m = 1, 2, ..., n, with sigma^*(k)(n) given in a comment in A279395.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 1, 3, 4, 1, 1, 7, 10, 5, 2, 1, 15, 28, 19, 6, 0, 1, 31, 82, 71, 26, 4, 2, 1, 63, 244, 271, 126, 30, 8, 2, 1, 127, 730, 1055, 626, 196, 50, 13, 3, 1, 255, 2188, 4159, 3126, 1230, 344, 83, 13, 0, 1, 511, 6562, 16511, 15626, 7564, 2402, 583, 91, 6, 2, 1, 1023, 19684, 65791, 78126, 45990, 16808, 4367, 757, 78, 12, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jan 10 2017

Keywords

Comments

The array A(k, n) = sigma^*A279395)%20=%20Sum">(k)(n) (notation of the Hardy reference, given also in a comment in A279395) = Sum{ d >= 1, d divides n} (-1)^(n-d)*d^k, for k >= 0 and n >=1, has the rows A112329, A113184, A064027, A008457, A279395, for k=0..4.
The triangle T(n, m) is obtained from the array A(k, n) read by upwards antidiagonals, with offset n=1.
The diagonals of triangle T are the rows of the array A. Each diagonal is multiplicative. See the given A-numbers above.
The row sums are given in A279397.
The column sums (with offset 0) are A000012, A000225, A034472, A099393, A034474, .. with o.g.f. G(m, z) = (-1)^m*Sum_{d | m} (-1)^d/(1 - d*z), m >= 1.

Examples

			The triangle T(n, m) begins:
n\m 1   2    3    4    5    6   7  8  9 10
1:  1
2:  1   0
3:  1   1    2
4:  1   3    4    1
5:  1   7   10    5    2
6:  1  15   28   19    6    0
7:  1  31   82   71   26    4   2
8:  1  63  244  271  126   30   8  2
9:  1 127  730 1055  626  196  50 13  3
10: 1 255 2188 4159 3126 1230 344 83 13  0
...
n = 11: 1 511 6562 16511 15626 7564 2402 583 91 6 2,
n = 12: 1 1023 19684 65791 78126 45990 16808 4367 757 78 12 2.
n = 13: 1 2047 59050 262655 390626 277876 117650 33823 6643 882 122 20 2,
n = 14: 1 4095 177148 1049599 1953126 1673310 823544 266303 59293 9390 1332 190 14 0,
n = 15: 1 8191 531442 4196351 9765626 10058524 5764802 2113663 532171 96906 14642 1988 170 8 4.
...
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

Crossrefs

Formula

T(n, m) = Sum_{ d >= 1, d divides m} (-1)^(m-d)*d^(n-m) = sigma^*_(n-m)(m), n >= 1, m = 1,2, ..., n. For the definition of
sigma^*_(k)(n) see the Hardy reference or a comment in A279395.
O.g.f triangle T: G(z, x) = Sum_{m>=0}
G(m, z)*(x*z)^m, with the column o.g.f. G( m, z) (with offset 0) given in a comment above.

A279395 a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^4.

Original entry on oeis.org

1, 15, 82, 271, 626, 1230, 2402, 4367, 6643, 9390, 14642, 22222, 28562, 36030, 51332, 69903, 83522, 99645, 130322, 169646, 196964, 219630, 279842, 358094, 391251, 428430, 538084, 650942, 707282, 769980, 923522, 1118479, 1200644, 1252830, 1503652, 1800253, 1874162, 1954830, 2342084, 2733742
Offset: 1

Views

Author

Wolfdieter Lang, Jan 09 2017

Keywords

Comments

This is the k=4 member of the family sigma^*_k(n), defined in the Hardy reference, which is sigma_k(2*j+1) if n = 2*j+1 and sigma_k^e(2*j) - sigma_k^o(2*j) if n=2*j, where the superscript e and o stands for a restriction to even and odd divisors in the sum of their k-th powers, respectively.

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 142.

Crossrefs

Cf. A112329 (k=0), A113184 (k=1), A064027 (k=2), A008457(k=3).

Programs

  • Magma
    [&+[(-1)^(n-d)*d^4:d in Divisors(n)]:n in [1..40]]; // Marius A. Burtea, Aug 17 2019
  • Maple
    # A version with signs - N. J. A. Sloane, Nov 23 2018
    zet1:=(n,i)->add((-1)^(d-1)*d^i, d in divisors(n));
    szet1:=i->[seq(zet1(n,i),n=1..120)];
    szet1(4);
  • Mathematica
    f[p_, e_] := If[p == 2, (2^(4*(e + 1)) - 31)/15, (p^(4*(e + 1)) - 1)/(p^4 - 1)]; a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 40] (* Amiram Eldar, Aug 17 2019 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n-d)*d^4); \\ Michel Marcus, Jan 09 2017
    

Formula

a(n) = Sum_{ d >= 1, d divides n} (-1)^(n-d)*d^4.
Bisection: a(2*j-1) = A001159(2*j-1), a(2*j) = 16*A001159(j) - A051001(j), j >= 1. See the comment above for k=4, and the Hardy reference.
G.f.: Sum_{k>=1} k^4*x^k/(1-(-x)^k).
Multiplicative with a(2^k) = 2^4*(2^(4*k)-1)/(2^4-1) - 1 = (2^(4*(k+1)) - 31)/15 and a(p^k) = (p^(4*(k+1))-1)/(p^4-1) for primes p > 2 (see A001159).

A072558 Decimal expansion of the one-ninth constant.

Original entry on oeis.org

1, 0, 7, 6, 5, 3, 9, 1, 9, 2, 2, 6, 4, 8, 4, 5, 7, 6, 6, 1, 5, 3, 2, 3, 4, 4, 5, 0, 9, 0, 9, 4, 7, 1, 9, 0, 5, 8, 7, 9, 7, 6, 5, 6, 3, 2, 9, 0, 1, 1, 5, 0, 8, 6, 6, 9, 8, 5, 6, 8, 1, 4, 6, 9, 8, 1, 9, 2, 4, 3, 4, 1, 4, 6, 2, 6, 4, 2, 6, 4, 3, 4, 1, 2, 7, 7, 6, 1, 9, 9, 0, 4, 0, 9, 1, 5, 8, 7, 3, 1, 9, 2, 9, 6, 7
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

The generating function of A113184 equals 1/8 at q = Lambda = 0.1076539192... where K(k)=2E(k). - Michael Somos, Jul 21 2006

Examples

			0.1076539192264845766153234450909471905879...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, pp. 259-262.

Crossrefs

Programs

  • Mathematica
    c = k /. FindRoot[ EllipticK[k^2] == 2*EllipticE[k^2], {k, 9/10}, WorkingPrecision -> 120]; Take[ RealDigits[ N[Exp[-Pi*(EllipticK[1 - c^2] / EllipticK[c^2])], 120]][[1]], 105] (* Jean-François Alcover, Jul 28 2011, after MathWorld *)
    RealDigits[q /. FindRoot[4 EllipticE[InverseEllipticNomeQ[q]] == Pi EllipticTheta[3, 0, q]^2, {q, 1/9, 0, 1}, WorkingPrecision -> 105]][[1]] (* Jan Mangaldan, Jun 25 2020 *)
  • PARI
    c=solve(x=.9,.91, ellK(x)-2*ellE(x)); exp(-Pi*ellK(sqrt(1 - c^2))/ellK(c)) \\ Charles R Greathouse IV, Feb 04 2025

A284372 a(n) = Sum_{d|n, d = 0, 1, or 11 mod 12} d.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 13, 14, 1, 1, 1, 1, 1, 1, 1, 1, 12, 24, 37, 26, 14, 1, 1, 1, 1, 1, 1, 12, 1, 36, 49, 38, 1, 14, 1, 1, 1, 1, 12, 1, 24, 48, 85, 50, 26, 1, 14, 1, 1, 12, 1, 1, 1, 60, 73, 62, 1, 1, 1, 14, 12, 1, 1, 24, 36, 72, 145, 74, 38, 26, 1
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Examples

			From _Peter Bala_, Dec 11 2020: (Start)
n = 24: n is not of the form m*(6*m +- 5), so e(n) = 0 and a(24) = a(23) + a(13) - a(10)  = 24 + 14 - 1  = 37;
n = 39: n = m*(6*m - 5) for m = 3, so e(n) = 39 and a(39) = 39 + a(38) + a(28) - a(25) - a(5) = 39 + 1 + 1 - 26 - 1 = 14;
n = 76: n = m*(6*m - 5) for m = 4, so e(n) = -76 and a(4) = -76 + a(75) + a(65) - a(62) - a(42) + a(37) + a(7) = -76 + 26 + 14  - 1 - 1 + 38 + 1 = 1. (End)
		

Crossrefs

Cf. A210964 (1/f(-x, -x^11)), A245058.
Cf. Sum_{d|n, d = 0, 1, or k-1 mod k} d: A000203 (k=3), A113184(k=4), A284361 (k=5), A284362 (k=6), A284363 (k=7), this sequence (k=12).

Programs

  • Mathematica
    Table[Sum[If[Mod[d, 12]<2 || Mod[d, 12]==11, d, 0], {d, Divisors[n]}], {n, 80}] (* Indranil Ghosh, Mar 25 2017 *)
    sd12[n_]:=Total[Select[Divisors[n],MemberQ[{0,1,11},Mod[#,12]]&]]; Array[sd12,80] (* Harvey P. Dale, Aug 29 2024 *)
  • PARI
    a(n) = sumdiv(n, d, ((d + 1) % 12 < 3) * d); \\ Amiram Eldar, Apr 12 2024

Formula

From Peter Bala, Dec 11 2020: (Start)
O.g.f.: Sum_{k >= 1, k == 0, 1 or 11 (mod 12)} k*x^k/(1 - x^k).
Define a(n) = 0 for n < 1. Then a(n) = e(n) + a(n-1) + a(n-11) - a(n-14) - a(n-34) + + - -, where [1, 11, 14, 34, ...] is the sequence of generalized 14-gonal numbers A195818, and e(n) = (-1)^(m+1)*n if n is a generalized 14-gonal number of the form m*(6*m+-5); otherwise e(n) = 0. Examples of this recurrence are given below. (End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/48 = -A245058 = 0.205616... . - Amiram Eldar, Apr 12 2024

A192540 G.f.: A(x) = Series_Reversion(x*G(x)) where G(x) = Sum_{n>=0} (-x)^(n*(n+1)/2).

Original entry on oeis.org

1, 1, 2, 6, 20, 70, 255, 960, 3707, 14597, 58382, 236522, 968597, 4003061, 16674858, 69936760, 295092057, 1251747436, 5334958079, 22834290248, 98108081192, 422986894605, 1829443421394, 7935301625600, 34510975557383, 150456011512671, 657415433062780
Offset: 1

Views

Author

Paul D. Hanna, Jul 03 2011

Keywords

Comments

Related q-series: Sum_{n>=0} (-q)^(n*(n+1)/2) = q^(-1/8)*eta(q)*eta(q^4)/eta(q^2) is a g.f. of A106459.

Examples

			G.f.: A(x) = x + x^2 + 2*x^3 + 6*x^4 + 20*x^5 + 70*x^6 + 255*x^7 + ...
The g.f. A = A(x) satisfies the following relations:
(1) A = x/(1 - A - A^3 + A^6 + A^10 - A^15 - A^21 + A^28 + A^36 + ...).
(2) A = x/((1-A)*(1+A^2)* (1-A^2)*(1+A^4)* (1-A^3)*(1+A^6)* (1-A^4)*(1+A^8)*...).
(3) A = x/((1-A)*(1-A^4)* (1-A^3)*(1-A^8)* (1-A^5)*(1-A^12)* (1-A^7)*(1-A^16)*...).
(4) A = x*(1+A)/(1-A^2)* (1+A^3)/(1-A^4)* (1+A^5)/(1-A^6) * (1+A^7)/(1-A^8)*...
(5) A = x*(1-A^2)/(1-A)* (1-A^6)/(1-A^2)* (1-A^10)/(1-A^3)* (1-A^14)/(1-A^4)*...
(6) A = x*exp(A/(1-A) - A^2/(2*(1+A^2)) + A^3/(3*(1-A^3)) - A^4/(4*(1+A^4)) + ...).
(7) A = x*exp(A + A^2/2 + 4*A^3/3 + 5*A^4/4 + 6*A^5/5 +...+ A113184(n)*A^n/n + ...).
		

Crossrefs

Programs

  • Maple
    nmax:=27: with(gfun): f := proc(x): x*add((-x)^(n*(n+1)/2),n=0..nmax) end: S:=series(f(x),x,nmax): g:= seriestoseries(S,'revogf'): seq(coeftayl (g,x=0,n),n=1..nmax); # Johannes W. Meijer, Jul 04 2011
  • Mathematica
    Rest[CoefficientList[InverseSeries[Series[x*EllipticTheta[2, 0, Sqrt[-x]] / (2*(-x)^(1/8)), {x, 0, 30}], x], x]] (* Vaclav Kotesovec, Aug 17 2015 *)
    (* Calculation of constants {d,c}: *) Chop[{1/r, 8*(s/Sqrt[2*Pi*(77 - 8*(-s)^(7/8) *s*(Derivative[0, 0, 2][EllipticTheta][2, 0, Sqrt[-s]] / r))])} /. FindRoot[{2*r == -(-s)^(7/8)*EllipticTheta[2, 0, Sqrt[-s]], 2*(-s)^(11/8)*Derivative[0, 0, 1][EllipticTheta][2, 0, Sqrt[-s]] == 7*r}, {r, 1/5}, {s, 1/2}, WorkingPrecision -> 70]] (* Vaclav Kotesovec, Jan 17 2024 *)
  • PARI
    {a(n)=polcoeff(serreverse(x*sum(m=0,sqrtint(2*n)+1,(-x)^(m*(m+1)/2)+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n,(1 - A^m)*(1 + A^(2*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x/prod(m=1,n\2,(1 - A^(2*m-1))*(1 - A^(4*m))+x*O(x^n)));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n\2,(1 + A^(2*m-1))/(1 - A^(2*m)+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*prod(m=1,n,(1 - A^(4*m-2))/(1 - A^m+x*O(x^n))));polcoeff(A,n)}
    
  • PARI
    {a(n)=local(A=x+x^2); for(i=1, n, A=x*exp(sum(m=1, n, -(-A+x*O(x^n))^m/(1+(-A)^m)/m))); polcoeff(A, n)}
    
  • PARI
    {a(n)=if(n<1,0,(1/n)*polcoeff(x/prod(k=1,n,(1-x^k)*(1+x^(2*k)+x*O(x^n)))^n,n))}
    
  • PARI
    {a(n)=local(A=x+x^2);for(i=1,n,A=x*exp(sum(m=1,n, A^m*sumdiv(m,d,(-1)^(m-d)*d)/m)+x*O(x^n)));polcoeff(A,n)}

Formula

G.f. satisfies:
(1) A(x) = x/[Sum_{n>=0} (-A(x))^(n*(n+1)/2)].
(2) A(x) = x/[Product_{n>=1} (1 - A(x)^n)*(1 + A(x)^(2*n))].
(3) A(x) = x/[Product_{n>=1} (1 - A(x)^(2*n-1))*(1 - A(x)^(4*n))].
(4) A(x) = x* Product_{n>=1} (1 + A(x)^(2*n-1))/(1 - A(x)^(2*n)).
(5) A(x) = x* Product_{n>=1} (1 - A(x)^(4*n-2))/(1 - A(x)^n).
(6) A(x) = x* exp( Sum_{n>=1} -(-A(x))^n/(n*(1 + (-A(x))^n)) ).
(7) A(x) = x* exp( Sum_{n>=1} A(x)^n*Sum_{d|n} (-1)^(n-d)*d/n ).
a(n) = [x^n] (1/n)*x/[Product_{k>=1} (1 - x^k)*(1 + x^(2*k))]^n for n >= 1.
a(n) ~ c * d^n / n^(3/2), where d = 4.6257905683677649210878404538251898489748116820946869227688637924996..., c = 0.1001072494040204029591345793571534412084516176488795... . - Vaclav Kotesovec, Aug 17 2015

A195382 Numbers such that the difference between the sum of the even divisors and the sum of the odd divisors is prime.

Original entry on oeis.org

4, 8, 16, 18, 32, 50, 256, 512, 578, 1458, 2048, 3362, 4802, 6962, 8192, 10082, 15842, 20402, 31250, 34322, 55778, 57122, 59858, 167042, 171698, 293378, 524288, 559682, 916658, 982802, 1062882, 1104098, 1158242, 1195058, 1367858, 1407842, 1414562
Offset: 1

Views

Author

Michel Lagneau, Sep 17 2011

Keywords

Comments

Note that these are all even numbers. The odd numbers, producing the negative of a prime, are all squares whose square roots are in A193070. - T. D. Noe, Sep 19 2011

Examples

			The divisors of 18 are  { 1, 2, 3, 6, 9, 18}, and  (2 + 6 + 18) - (1 + 3 + 9) = 13  is prime. Hence 18 is in the sequence.
		

Crossrefs

Subsequence of A088827.

Programs

  • Maple
    with(numtheory):for n from 2 by 2 to 200 do:x:=divisors(n):n1:=nops(x):s1:=0:s2:=0:for m from 1 to n1 do:if irem(x[m],2)=1 then s1:=s1+x[m]:else s2:=s2+x[m]:fi:od: if type(s2-s1,prime)=true then printf(`%d, `,n): else fi:od:
  • Mathematica
    f[n_] := Module[{d = Divisors[n], p}, p = Plus @@ Select[d, OddQ] - Plus @@ Select[d, EvenQ]; PrimeQ[p]]; Select[Range[2,1000000,2], f] (* T. D. Noe, Sep 19 2011 *)
  • PARI
    list(lim)=my(v=List(),t);forstep(n=3,sqrt(lim\2),2,if(isprime(s=sigma(n^2)),listput(v,2*n^2)));t=2;while((t*=2)<=lim,if(isprime(2*sigma(t/2)-1),listput(v,t)));vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 18 2011
Showing 1-10 of 16 results. Next