A224340 G.f.: exp( Sum_{n>=1} A113184(n^2)*x^n/n ), where A113184(n) = difference between sum of odd divisors of n and sum of even divisors of n.
1, 1, 3, 7, 16, 30, 64, 120, 236, 434, 805, 1445, 2614, 4568, 8003, 13783, 23616, 39886, 67124, 111652, 184862, 303282, 495001, 801939, 1292968, 2070628, 3300796, 5232112, 8256081, 12961543, 20264168, 31535316, 48882592, 75455902, 116041910, 177775284, 271401683
Offset: 0
Keywords
Examples
L.g.f.: A(x) = 1 + x + 3*x^2 + 7*x^3 + 16*x^4 + 30*x^5 + 64*x^6 + 120*x^7 +... where log(A(x)) = x + 5*x^2/2 + 13*x^3/3 + 29*x^4/4 + 31*x^5/5 + 65*x^6/6 + 57*x^7/7 + 125*x^8/8 + 121*x^9/9 +...+ A113184(n^2)*x^n/n +...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Programs
-
PARI
{a(n)=polcoeff(exp(sum(k=1,n,sumdiv(k^2, d, (-1)^d*d)*(-x)^k/k)+x*O(x^n)),n)} for(n=0,40,print1(a(n),", "))
Formula
Logarithmic derivative yields A224339.
Comments