cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077973 Expansion of 1/(1+x-2*x^3).

Original entry on oeis.org

1, -1, 1, 1, -3, 5, -3, -3, 13, -19, 13, 13, -51, 77, -51, -51, 205, -307, 205, 205, -819, 1229, -819, -819, 3277, -4915, 3277, 3277, -13107, 19661, -13107, -13107, 52429, -78643, 52429, 52429, -209715, 314573, -209715, -209715, 838861, -1258291, 838861, 838861, -3355443, 5033165, -3355443
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002, Jun 17 2007

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,-1,1];; for n in [4..50] do a[n]:=-a[n-1]+2*a[n-3]; od; a; # G. C. Greubel, Jun 24 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1+x-2*x^3) )); // G. C. Greubel, Jun 24 2019
    
  • Mathematica
    LinearRecurrence[{-1,0,2}, {1,-1,1}, 50] (* or *) CoefficientList[Series[ 1/(1+x-2x^3), {x,0,50}], x] (* Harvey P. Dale, Jun 09 2017 *)
  • PARI
    Vec(1/(1+x-2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    (1/(1+x-2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jun 24 2019
    

Formula

a(n) = -a(n-1) +2*a(n-3). - Paul Curtz, Apr 23 2008
a(n) = (-1)^n * A077950(n) = (1/5) * (2*A134142(n) + 1). - Ralf Stephan, Aug 18 2013
G.f.: G(0)/(2*(1-x^2)), where G(k)= 1 + 1/(1 - x*(k+1)/(x*(k+2) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 25 2013
a(n) = (-1)^n * Sum_{k=1..floor((n+2)/2)} binomial(n+2-2*k, k-1)*(-2)^(k-1). - Taras Goy, Sep 18 2019

A137445 a(n) = 2a(n-1)-2a(n-2), with a(0)=3 and a(1)=2.

Original entry on oeis.org

3, 2, -2, -8, -12, -8, 8, 32, 48, 32, -32, -128, -192, -128, 128, 512, 768, 512, -512, -2048, -3072, -2048, 2048, 8192, 12288, 8192, -8192, -32768, -49152, -32768, 32768, 131072, 196608, 131072, -131072, -524288, -786432, -524288, 524288
Offset: 0

Views

Author

Paul Curtz, Apr 18 2008

Keywords

Programs

  • Mathematica
    LinearRecurrence[{2,-2},{3,2},40] (* Harvey P. Dale, May 03 2018 *)

Formula

O.g.f.: (3-4x)/(1-2x+2x^2). a(n)=(-1)^(n+1)*A134142(n+1). - R. J. Mathar, May 01 2008
a(n) = (3/2 - I/2)*(1 - I)^n + (3/2 + I/2)*(1 + I)^n, n>=0. - Taras Goy, Apr 20 2019

Extensions

More terms from R. J. Mathar, May 01 2008
Showing 1-2 of 2 results.