A077934 Duplicate of A077973.
1, 1, 1, 1, 3, 5, 3, 3, 13, 19, 13, 13, 51, 77, 51, 51, 205, 307, 205, 205, 819, 1229, 819, 819
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a:=[1,1,1];; for n in [4..50] do a[n]:= a[n-1]-2*a[n-3]; od; a; # G. C. Greubel, Jul 03 2019
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( 1/(1-x+2*x^3) )); // G. C. Greubel, Jul 03 2019
CoefficientList[Series[1/(1-x+2x^3),{x,0,50}],x] (* or *) LinearRecurrence[ {1,0,-2}, {1,1,1},50] (* Harvey P. Dale, Oct 18 2013 *)
Vec(1/(1-x+2*x^3)+O(x^50)) \\ Charles R Greathouse IV, Sep 26 2012
(1/(1-x+2*x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Jul 03 2019
First six rows: 1 1...2 1...1...3 1...1...3....4 1...1...2....8...5 1...1...2....6...17...6 First three polynomials v(n,x): 1, 1 + 2x, 1 + x + 3x^2
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] - 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210872 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210873 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A083318 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* -A077973 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
First six rows: 1 0...1 0...2...1 0...1...5...1 0...1...4...9....1 0...1...3...12...14...1 First three polynomials u(n,x): 1, x, 2x + x^2.
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] - 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210872 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210873 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A083318 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* -A077973 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
First six rows: 1 2...1 1...5...1 1...4...9....1 1...3...12...14...1 1...3...9....29...20...1 First three polynomials u(n,x): 1, 2 + x, 1 + 5x + x^2.
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + x; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210876 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210877 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077973 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
First six rows: 1 1...2 1...1...3 1...1...3...4 1...1...2...8...5 1...1...2...6...17...6 First three polynomials v(n,x): 1, 1 + 2x, 1 + x + 3x^2
u[1, x_] := 1; v[1, x_] := 1; z = 14; u[n_, x_] := x*u[n - 1, x] + v[n - 1, x] + 1; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + x; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A210876 *) cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A210877 *) Table[u[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[v[n, x] /. x -> 1, {n, 1, z}] (* A000225 *) Table[u[n, x] /. x -> -1, {n, 1, z}] (* A077973 *) Table[v[n, x] /. x -> -1, {n, 1, z}] (* A137470 *)
LinearRecurrence[{-1,0,2},{1,1,0},50] (* Harvey P. Dale, Sep 17 2012 *)
LinearRecurrence[{5,-8,6},{0,0,1},40] (* Harvey P. Dale, Sep 27 2020 *)
concat([0,0], Vec(1/((1 - 3*x)*(1 - 2*x + 2*x^2)) + O(x^40))) \\ Andrew Howroyd, Jan 03 2020
Triangle begins: 1; -1; 1; -1, 2; 1, -4; -1, 6; 1, -8, 4; -1, 10, -12; 1, -12, 24; -1, 14, -40, 8; 1, -16, 60, -32; -1, 18, -84, 80; 1, -20, 112, -160, 16; -1, 22, -144, 280, -80; 1, -24, 180, -448, 240; -1, 26, -220, 672, -560, 32; 1, -28, 264, -960, 1120, -192; -1, 30, -312, 1320, -2016, 672; 1, -32, 364, -1760, 3360, -1792, 64; -1, 34, -420, 2288, -5280, 4032, -448;
t[n_, k_] := t[n, k] = (-1)^(n - 3k) * 2^k/((n - 3 k)! k!) * (n - 2 k)!; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]} ] // Flatten t[0, 0] = 1; t[n_, k_] := t[n, k] = If[n < 0 || k < 0, 0, - t[n - 1, k] + 2 t[n - 3, k - 1]]; Table[t[n, k], {n, 0, 19}, {k, 0, Floor[n/3]}] // Flatten
Comments