A134171 a(n) = (9/2)*(n-1)*(n-2)*(n-3).
0, 0, 0, 27, 108, 270, 540, 945, 1512, 2268, 3240, 4455, 5940, 7722, 9828, 12285, 15120, 18360, 22032, 26163, 30780, 35910, 41580, 47817, 54648, 62100, 70200, 78975, 88452, 98658, 109620, 121365, 133920, 147312, 161568, 176715, 192780, 209790, 227772, 246753
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- D. Zvonkine, Home Page.
- D. Zvonkine, Counting ramified coverings and intersection theory on Hurwitz spaces II (local structure of Hurwitz spaces and combinatorial results), Moscow Mathematical Journal, Vol. 7, No. 1 (2007), 135-162.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
Magma
[(9/2)*(n-1)*(n-2)*(n-3) : n in [1..50]]; // Wesley Ivan Hurt, May 29 2016
-
Maple
seq(27*binomial(n-1, 3), n=1..30); # Zerinvary Lajos, May 18 2008
-
Mathematica
LinearRecurrence[{4,-6,4,-1}, {0,0,0,27}, 50] (* G. C. Greubel, May 29 2016 *)
Formula
a(n) = 27 * binomial(n-1,3). - Zerinvary Lajos, Aug 06 2008
From Chai Wah Wu, May 29 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
G.f.: 27*x^4/(1-x)^4. (End)
E.g.f.: 27 + (9/2*(x^3-3*x^2+6*x-6))*exp(x). - G. C. Greubel, May 17 2021
a(n) = 27 * A000292(n-3) for n >= 3. - Alois P. Heinz, May 17 2021
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=4} 1/a(n) = 1/18.
Sum_{n>=4} (-1)^n/a(n) = 4*log(2)/9 - 5/18. (End)
Comments