cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134171 a(n) = (9/2)*(n-1)*(n-2)*(n-3).

Original entry on oeis.org

0, 0, 0, 27, 108, 270, 540, 945, 1512, 2268, 3240, 4455, 5940, 7722, 9828, 12285, 15120, 18360, 22032, 26163, 30780, 35910, 41580, 47817, 54648, 62100, 70200, 78975, 88452, 98658, 109620, 121365, 133920, 147312, 161568, 176715, 192780, 209790, 227772, 246753
Offset: 1

Views

Author

N. J. A. Sloane, Jan 30 2008

Keywords

Comments

Number of n permutations (n>=3) of 4 objects u, v, z, x with repetition allowed, containing n-3=0 u's. Example: if n=3 then n-3 =zero u, a()=27 because we have vzx, vxz, zvx, zxv, xvz, xzv, vvv, zzz, xxx, vvx, vxv, xvv, xxv, xvx, vxx, vvz, vzv, zvv, zzv, zvz, vzz, xzz, zxz, zzx, xxz, xzx, zxx. A027465 formatted as a triangular array: diagonal: 27, 108, 270, 540, 945, 1512. - Zerinvary Lajos, Aug 06 2008

Crossrefs

Programs

  • Magma
    [(9/2)*(n-1)*(n-2)*(n-3) : n in [1..50]]; // Wesley Ivan Hurt, May 29 2016
  • Maple
    seq(27*binomial(n-1, 3), n=1..30); # Zerinvary Lajos, May 18 2008
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {0,0,0,27}, 50] (* G. C. Greubel, May 29 2016 *)

Formula

a(n) = 27 * binomial(n-1,3). - Zerinvary Lajos, Aug 06 2008
From Chai Wah Wu, May 29 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.
G.f.: 27*x^4/(1-x)^4. (End)
E.g.f.: 27 + (9/2*(x^3-3*x^2+6*x-6))*exp(x). - G. C. Greubel, May 17 2021
a(n) = 27 * A000292(n-3) for n >= 3. - Alois P. Heinz, May 17 2021
From Amiram Eldar, Sep 24 2022: (Start)
Sum_{n>=4} 1/a(n) = 1/18.
Sum_{n>=4} (-1)^n/a(n) = 4*log(2)/9 - 5/18. (End)