cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134288 a(n) = binomial(n+7,7)*binomial(n+7,6)/(n+7).

Original entry on oeis.org

1, 28, 336, 2520, 13860, 60984, 226512, 736164, 2147145, 5725720, 14158144, 32821152, 71954064, 150233760, 300467520, 578399976, 1075994073, 1941008916, 3405278800, 5824819000, 9735768900, 15931258200, 25565576400, 40293571500, 62455035825, 95315993136
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Comments

Seventh column of Narayana triangle A001263.
In the Narayana triangle N(n,k) = A001263(n,k) the sequence of column no. k>=1 (without leading zeros) coincides with the sequence of the diagonal d=k-1>=0 (d=0 for the main diagonal N(n,n)).
Kekulé numbers K(O(1,6,n)) for certain benzenoids (see the Cyvin-Gutman reference, p. 105, eq. (i)).

References

  • S. J. Cyvin and I. Gutman, KekulĂ© structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; Prop. 8.4, case n=8. - N. J. A. Sloane, Aug 28 2010.

Crossrefs

Cf. A002378.
Cf. A108679 (sixth column of Narayana triangle).
Cf. A134289 (eighth column of Narayana triangle).

Programs

  • GAP
    List([0..30], n-> Binomial(n+7, 7)*Binomial(n+6, 5)/6); # G. C. Greubel, Aug 27 2019
  • Magma
    [Binomial(n+7, 7)*Binomial(n+6, 5)/6: n in [0..30]]; // G. C. Greubel, Aug 27 2019
    
  • Maple
    a := n -> ((n+1)*((n+2)*(n+3)*(n+4)*(n+5)*(n+6))^2*(n+7))/3628800:
    seq(a(n), n=0..25); # Peter Luschny, Sep 01 2016
  • Mathematica
    Table[Binomial[n+7,7] Binomial[n+7,6]/(n+7),{n,0,30}] (* or *) LinearRecurrence[{13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13, 1}, {1,28,336,2520,13860,60984,226512,736164,2147145,5725720, 14158144, 32821152,71954064}, 30] (* Harvey P. Dale, Sep 28 2016 *)
  • PARI
    Vec((1+15*x+50*x^2+50*x^3+15*x^4+x^5)/(1-x)^13 + O(x^30)) \\ Altug Alkan, Sep 01 2016
    
  • PARI
    vector(30, n, binomial(n+6, 7)*binomial(n+5, 5)/6) \\ G. C. Greubel, Aug 27 2019
    
  • Sage
    [binomial(n+7, 7)*binomial(n+6, 5)/6 for n in (0..30)] # G. C. Greubel, Aug 27 2019
    

Formula

a(n) = A001263(n+7,7).
O.g.f.: (1 + 15*x + 50*x^2 + 50*x^3 + 15*x^4 + x^5)/(1-x)^13. Numerator polynomial is the sixth row polynomial of the Narayana triangle.
a(n) = binomial(n+6,6)^2 - binomial(n+6,5)*binomial(n+6,7). - Gary Detlefs, Dec 05 2011
a(n) = Product_{i=1..6} A002378(n+i)/A002378(i). - Bruno Berselli, Sep 01 2016
From Amiram Eldar, Oct 19 2020: (Start)
Sum_{n>=0} 1/a(n) = 1741019/20 - 8820*Pi^2.
Sum_{n>=0} (-1)^n/a(n) = 210*Pi^2 - 41433/20. (End)

Extensions

Edited by N. J. A. Sloane, Aug 28 2010