cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134400 M * A007318, where M = triangle with (1, 1, 2, 3, ...) in the main diagonal and the rest zeros.

Original entry on oeis.org

1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 4, 16, 24, 16, 4, 5, 25, 50, 50, 25, 5, 6, 36, 90, 120, 90, 36, 6, 7, 49, 147, 245, 245, 147, 49, 7, 8, 64, 224, 448, 560, 448, 224, 64, 8, 9, 81, 324, 756, 1134, 1134, 756, 324, 81, 9, 10, 100, 450, 1200, 2100, 2520, 2100, 1200, 450, 100, 10
Offset: 0

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Row sums = A134401: (1, 2, 8, 24, 64, 160, 384, ...).
Triangle T(n,k), read by rows, given by [1,1,-1,1,0,0,0,0,0,...] DELTA [1,1,-1,1,0,0,0,0,0,...] where DELTA is the operator defined in A084938. A134402*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 26 2007
For n > 0, from n athletes, select a team of k players and then choose a coach who is allowed to be on the team or not. - Geoffrey Critzer, Mar 13 2010
Row sums are A036289 if first term changed to zero. Diagonal sums are A023610, starting with the 2nd diagonal. Partial sums of diagonals are A002940 if first term changed to zero. - John Molokach, Jul 06 2013
For n > 0, T(n,k) is the number of states in Sokoban puzzle with n non-obstacles cells and k boxes (see Russell and Norvig at page 157). - Stefano Spezia, Dec 03 2023

Examples

			First few rows of the triangle:
  1;
  1,  1;
  2,  4,   2;
  3,  9,   9,   3;
  4, 16,  24,  16,   4;
  5, 25,  50,  50,  25,   5;
  6, 36,  90, 120,  90,  36,  6;
  7, 49, 147, 245, 245, 147, 49, 7;
  ...
		

References

  • Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Fourth Edition, Hoboken: Pearson, 2021.

Crossrefs

T(2n,n) give A002011(n-1) for n>=1.

Programs

  • Maple
    with(combstruct): for n from 0 to 10 do seq(`if`(n=0, 1, n)* count( Combination(n), size=m), m=0..n) od; # Zerinvary Lajos, Apr 09 2008
  • Mathematica
    Join[{1},Table[Table[n*Binomial[n, k], {k,0, n}], {n, 10}]] //Flatten (* Geoffrey Critzer, Mar 13 2010 adapted by Stefano Spezia, Dec 03 2023 *)

Formula

From Geoffrey Critzer, Mar 13 2010: (Start)
T(0,0) = 1 and T(n,k) = n * binomial(n,k) for n > 0.
E.g.f. for column k is: (x^k/k!)*exp(x)*(x+k). (End)
T(n,k) = A003506(n,k) + A003506(n,k-1). - Geoffrey Critzer, Mar 13 2010
G.f.: (1-x-x*y+x^2+x^2*y+x^2*y^2)/(1-2*x-2*x*y+x^2+2*x^2*y+x^2*y^2). - Philippe Deléham, Nov 14 2013
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 14 2013
E.g.f.: 1 + exp(y*x)*exp(x)*(y*x + x). - Geoffrey Critzer, Mar 15 2015

Extensions

a(55)-a(65) from Stefano Spezia, Dec 03 2023