A134400 M * A007318, where M = triangle with (1, 1, 2, 3, ...) in the main diagonal and the rest zeros.
1, 1, 1, 2, 4, 2, 3, 9, 9, 3, 4, 16, 24, 16, 4, 5, 25, 50, 50, 25, 5, 6, 36, 90, 120, 90, 36, 6, 7, 49, 147, 245, 245, 147, 49, 7, 8, 64, 224, 448, 560, 448, 224, 64, 8, 9, 81, 324, 756, 1134, 1134, 756, 324, 81, 9, 10, 100, 450, 1200, 2100, 2520, 2100, 1200, 450, 100, 10
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 2, 4, 2; 3, 9, 9, 3; 4, 16, 24, 16, 4; 5, 25, 50, 50, 25, 5; 6, 36, 90, 120, 90, 36, 6; 7, 49, 147, 245, 245, 147, 49, 7; ...
References
- Stuart Russell and Peter Norvig, Artificial Intelligence: A Modern Approach, Fourth Edition, Hoboken: Pearson, 2021.
Links
- Wikipedia, Sokoban
Crossrefs
Programs
-
Maple
with(combstruct): for n from 0 to 10 do seq(`if`(n=0, 1, n)* count( Combination(n), size=m), m=0..n) od; # Zerinvary Lajos, Apr 09 2008
-
Mathematica
Join[{1},Table[Table[n*Binomial[n, k], {k,0, n}], {n, 10}]] //Flatten (* Geoffrey Critzer, Mar 13 2010 adapted by Stefano Spezia, Dec 03 2023 *)
Formula
From Geoffrey Critzer, Mar 13 2010: (Start)
T(0,0) = 1 and T(n,k) = n * binomial(n,k) for n > 0.
E.g.f. for column k is: (x^k/k!)*exp(x)*(x+k). (End)
G.f.: (1-x-x*y+x^2+x^2*y+x^2*y^2)/(1-2*x-2*x*y+x^2+2*x^2*y+x^2*y^2). - Philippe Deléham, Nov 14 2013
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) - T(n-2,k-2), T(0,0)=T(1,0)=T(1,1)=1, T(2,0)=T(2,2)=2, T(2,1)=4, T(n,k)=0 if k < 0 or if k > n. - Philippe Deléham, Nov 14 2013
E.g.f.: 1 + exp(y*x)*exp(x)*(y*x + x). - Geoffrey Critzer, Mar 15 2015
Extensions
a(55)-a(65) from Stefano Spezia, Dec 03 2023
Comments