Original entry on oeis.org
1, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768
Offset: 0
a(3) = 24 = sum of row 3 terms of triangle A134400: (3 + 9 + 9 + 3).
a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5) = (1 + 3 + 15 + 5).
-
a:=Concatenation([1],List([1..30],n->n*2^n)); # Muniru A Asiru, Oct 28 2018
-
1,seq(n*2^n,n=1..30); # Muniru A Asiru, Oct 28 2018
-
F = Function[x, x*2^x];F[Range[1, 10]] (* Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008 *)
{1}~Join~Table[n 2^n, {n, 28}] (* or *) Total /@ Join[{{1}}, Table[n Binomial[n, k], {n, 28}, {k, 0, n}]] (* Michael De Vlieger, Apr 07 2016 *)
-
x='x+O('x^99); Vec((1-2*x+4*x^2)/(1-2*x)^2) \\ Altug Alkan, Apr 07 2016
A167930
Number of partitions of n in which some but not all parts are equal.
Original entry on oeis.org
0, 0, 0, 0, 1, 3, 4, 9, 13, 20, 29, 43, 57, 82, 110, 146, 195, 258, 334, 435, 558, 713, 910, 1150, 1446, 1814, 2268, 2815, 3491, 4308, 5301, 6501, 7954, 9692, 11795, 14295, 17301, 20876, 25148, 30200, 36218, 43322, 51741, 61650, 73354
Offset: 0
The partitions of 6 are:
6 ....................... All parts are distinct.
5 + 1 ................... All parts are distinct.
4 + 2 ................... All parts are distinct.
4 + 1 + 1 ............... Only some parts are equal ...... (1).
3 + 3 ................... All parts are equal.
3 + 2 + 1 ............... All parts are distinct.
3 + 1 + 1 + 1 ........... Only some parts are equal ...... (2).
2 + 2 + 2 ............... All parts are equal.
2 + 2 + 1 + 1 ........... Only some parts are equal ...... (3).
2 + 1 + 1 + 1 + 1 ....... Only some parts are equal ...... (4).
1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal.
Then a(6) = 4.
a(7) = 9 from 511 4111 331 322 3211 31111 2221 22111 211111. - _N. J. A. Sloane_, May 30 2024
Cf.
A000005,
A000009,
A000041,
A000065,
A032741,
A047967,
A111133,
A134400,
A135010,
A138121,
A167931,
A167932,
A167933.
-
f[lst_]:=With[{c=Split[lst]},Length[lst]>2&&Max[Length/@c]>1&&Length[c]>1]; Table[Length[ Select[ IntegerPartitions[n],f]],{n,0,50}] (* Harvey P. Dale, May 30 2024 *)
A167932
Number of partitions of n such that all parts are equal or all parts are distinct.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 7, 6, 9, 10, 13, 13, 20, 19, 25, 30, 36, 39, 51, 55, 69, 79, 92, 105, 129, 144, 168, 195, 227, 257, 303, 341, 395, 451, 515, 588, 676, 761, 867, 985, 1120, 1261, 1433, 1611, 1821, 2053, 2307, 2591, 2919, 3266, 3663, 4100, 4587, 5121, 5725, 6381
Offset: 0
The partitions of 6 are:
6 .............. All parts are distinct ..... (1).
5+1 ............ All parts are distinct ..... (2).
4+2 ............ All parts are distinct ..... (3).
4+1+1 .......... Only some parts are equal.
3+3 ............ All parts are equal ........ (4).
3+2+1 .......... All parts are distinct ..... (5).
3+1+1+1 ........ Only some parts are equal.
2+2+2 .......... All parts are equal ........ (6).
2+2+1+1 ........ Only some parts are equal.
2+1+1+1+1 ...... Only some parts are equal.
1+1+1+1+1+1 .... All parts are equal ........ (7).
So a(6) = 7.
Cf.
A000005,
A000009,
A000041,
A000065,
A032741,
A047967,
A111133,
A134400,
A135010,
A138121,
A167930,
A167931,
A167933.
A237765
Triangular array read by rows: T(n,k) = binomial(n,2)*binomial(n,k), n>=0, 0<=k<=n.
Original entry on oeis.org
0, 0, 0, 1, 2, 1, 3, 9, 9, 3, 6, 24, 36, 24, 6, 10, 50, 100, 100, 50, 10, 15, 90, 225, 300, 225, 90, 15, 21, 147, 441, 735, 735, 441, 147, 21, 28, 224, 784, 1568, 1960, 1568, 784, 224, 28, 36, 324, 1296, 3024, 4536, 4536, 3024, 1296, 324, 36
Offset: 0
0;
0, 0;
1, 2, 1;
3, 9, 9, 3;
6, 24, 36, 24, 6;
10, 50, 100, 100, 50, 10;
15, 90, 225, 300, 225, 90, 15;
21, 147, 441, 735, 735, 441, 147, 21;
28, 224, 784, 1568, 1960, 1568, 784, 224, 28;
36, 324, 1296, 3024, 4536, 4536, 3024, 1296, 324, 36;
- J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958, page 14, problem #2.
-
Table[Table[Binomial[n,2](Binomial[n-2,r]+2Binomial[n-2,r-1]+Binomial[n-2,r-2]),{r,0,n}],{n,0,9}]//Grid
Showing 1-4 of 4 results.
Comments