cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A134401 Row sums of triangle A134400.

Original entry on oeis.org

1, 2, 8, 24, 64, 160, 384, 896, 2048, 4608, 10240, 22528, 49152, 106496, 229376, 491520, 1048576, 2228224, 4718592, 9961472, 20971520, 44040192, 92274688, 192937984, 402653184, 838860800, 1744830464, 3623878656, 7516192768
Offset: 0

Views

Author

Gary W. Adamson, Oct 23 2007

Keywords

Comments

Essentially the same sequence as A036289.
An elephant sequence, see A175654. For the corner squares four A[5] vectors, with decimal values 187, 190, 250 and 442, lead to this sequence. For the central square these vectors lead to the companion sequence 2*A001792, for n >= 1 and a(0)=1. - Johannes W. Meijer, Aug 15 2010
Number of vertices on a partially truncated n-cube (column 1 of A271316). - Vincent J. Matsko, Apr 07 2016

Examples

			a(3) = 24 = sum of row 3 terms of triangle A134400: (3 + 9 + 9 + 3).
a(3) = 24 = (1, 3, 3, 1) dot (1, 1, 5, 5) = (1 + 3 + 15 + 5).
		

Crossrefs

Programs

  • GAP
    a:=Concatenation([1],List([1..30],n->n*2^n)); # Muniru A Asiru, Oct 28 2018
  • Maple
    1,seq(n*2^n,n=1..30); # Muniru A Asiru, Oct 28 2018
  • Mathematica
    F = Function[x, x*2^x];F[Range[1, 10]] (* Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008 *)
    {1}~Join~Table[n 2^n, {n, 28}] (* or *) Total /@ Join[{{1}}, Table[n Binomial[n, k], {n, 28}, {k, 0, n}]] (* Michael De Vlieger, Apr 07 2016 *)
  • PARI
    x='x+O('x^99); Vec((1-2*x+4*x^2)/(1-2*x)^2) \\ Altug Alkan, Apr 07 2016
    

Formula

Binomial transform of repeats of (4n+1): [1, 1, 5, 5, 9, 9, 13, 13, ...].
a(n) = n*2^n, n > 1. - Eugeny Yakimovitch (Eugeny.Yakimovitch(AT)gmail.com), Jan 08 2008
From Colin Barker, Jul 29 2012: (Start)
a(n) = 4*a(n-1) - 4*a(n-2) for n > 2.
G.f.: (1 - 2*x + 4*x^2)/(1-2*x)^2. (End)
E.g.f.: 1-E(0) where E(k)=1 - (k+1)/(1 - 2*x/(2*x - (k+1)^2/E(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 07 2012
a(n) = A097064(n+1) for n >= 1. - Georg Fischer, Oct 28 2018
E.g.f.: 1 + 2*exp(2*x)*x. - Stefano Spezia, Feb 12 2023

Extensions

More terms from Johannes W. Meijer, Aug 15 2010

A167930 Number of partitions of n in which some but not all parts are equal.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 4, 9, 13, 20, 29, 43, 57, 82, 110, 146, 195, 258, 334, 435, 558, 713, 910, 1150, 1446, 1814, 2268, 2815, 3491, 4308, 5301, 6501, 7954, 9692, 11795, 14295, 17301, 20876, 25148, 30200, 36218, 43322, 51741, 61650, 73354
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

The parts may not all be equal, and at least one part must occur at least twice. - N. J. A. Sloane, May 30 2024

Examples

			The partitions of 6 are:
6 ....................... All parts are distinct.
5 + 1 ................... All parts are distinct.
4 + 2 ................... All parts are distinct.
4 + 1 + 1 ............... Only some parts are equal ...... (1).
3 + 3 ................... All parts are equal.
3 + 2 + 1 ............... All parts are distinct.
3 + 1 + 1 + 1 ........... Only some parts are equal ...... (2).
2 + 2 + 2 ............... All parts are equal.
2 + 2 + 1 + 1 ........... Only some parts are equal ...... (3).
2 + 1 + 1 + 1 + 1 ....... Only some parts are equal ...... (4).
1 + 1 + 1 + 1 + 1 + 1 ... All parts are equal.
Then a(6) = 4.
a(7) = 9 from 511  4111  331  322  3211  31111  2221  22111  211111. - _N. J. A. Sloane_, May 30 2024
		

Crossrefs

Programs

  • Mathematica
    f[lst_]:=With[{c=Split[lst]},Length[lst]>2&&Max[Length/@c]>1&&Length[c]>1]; Table[Length[ Select[ IntegerPartitions[n],f]],{n,0,50}] (* Harvey P. Dale, May 30 2024 *)

Formula

a(n) = A047967(n) - A032741(n).
a(n) = A000041(n) - A000009(n) - A032741(n).
a(0) = 0: For n>0, a(n) = A000041(n) - A000009(n) - A000005(n) + 1.

Extensions

Edited by Omar E. Pol, Nov 16 2009
More terms from Max Alekseyev, May 02 2011

A167932 Number of partitions of n such that all parts are equal or all parts are distinct.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 7, 6, 9, 10, 13, 13, 20, 19, 25, 30, 36, 39, 51, 55, 69, 79, 92, 105, 129, 144, 168, 195, 227, 257, 303, 341, 395, 451, 515, 588, 676, 761, 867, 985, 1120, 1261, 1433, 1611, 1821, 2053, 2307, 2591, 2919, 3266, 3663, 4100, 4587, 5121, 5725, 6381
Offset: 0

Views

Author

Omar E. Pol, Nov 15 2009

Keywords

Comments

Note that for positive integers the number of partitions of n such that all parts are equal is equal to the number of proper divisors of n. (A032741(n)).

Examples

			The partitions of 6 are:
6 .............. All parts are distinct ..... (1).
5+1 ............ All parts are distinct ..... (2).
4+2 ............ All parts are distinct ..... (3).
4+1+1 .......... Only some parts are equal.
3+3 ............ All parts are equal ........ (4).
3+2+1 .......... All parts are distinct ..... (5).
3+1+1+1 ........ Only some parts are equal.
2+2+2 .......... All parts are equal ........ (6).
2+2+1+1 ........ Only some parts are equal.
2+1+1+1+1 ...... Only some parts are equal.
1+1+1+1+1+1 .... All parts are equal ........ (7).
So a(6) = 7.
		

Crossrefs

Programs

Formula

a(n) = A000041(n) - A167930(n).
a(n) = A000009(n) + A032741(n).

Extensions

More terms from D. S. McNeil, May 10 2010

A237765 Triangular array read by rows: T(n,k) = binomial(n,2)*binomial(n,k), n>=0, 0<=k<=n.

Original entry on oeis.org

0, 0, 0, 1, 2, 1, 3, 9, 9, 3, 6, 24, 36, 24, 6, 10, 50, 100, 100, 50, 10, 15, 90, 225, 300, 225, 90, 15, 21, 147, 441, 735, 735, 441, 147, 21, 28, 224, 784, 1568, 1960, 1568, 784, 224, 28, 36, 324, 1296, 3024, 4536, 4536, 3024, 1296, 324, 36
Offset: 0

Views

Author

Geoffrey Critzer, Feb 12 2014

Keywords

Comments

T(n,k) is the number of ways to underline exactly two elements of {1,2,...,n} and then circle exactly k elements. (The k elements that are circled are not necessarily different from the two underlined elements).
T(n,0) = T(n,n) = binomial(n,2) = A000217(n-1).
Row sums = 2^n*binomial(n,2) = A100381(n).

Examples

			0;
0,  0;
1,  2,   1;
3,  9,   9,    3;
6,  24,  36,   24,   6;
10, 50,  100,  100,  50,   10;
15, 90,  225,  300,  225,  90,   15;
21, 147, 441,  735,  735,  441,  147,  21;
28, 224, 784,  1568, 1960, 1568, 784,  224,  28;
36, 324, 1296, 3024, 4536, 4536, 3024, 1296, 324, 36;
		

References

  • J. Riordan, Introduction to Combinatorial Analysis, Wiley, 1958, page 14, problem #2.

Crossrefs

Cf. A134400.

Programs

  • Mathematica
    Table[Table[Binomial[n,2](Binomial[n-2,r]+2Binomial[n-2,r-1]+Binomial[n-2,r-2]),{r,0,n}],{n,0,9}]//Grid

Formula

E.g.f.: (x^2/2! + 2*y*x^2/2! + y^2*x^2/2!)*exp(y*x)*exp(x).
E.g.f. for column k: x^2/2!*exp(x)*(x^k/k! + 2*x^(k-1)/(k-1)! + x^(k-2)/(k-2)!).
T(n,k) = C(n,2)*( C(n-2,k) + 2*C(n-2,k-1) + C(n-2,k-2) ).
Showing 1-4 of 4 results.