cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A134449 Sum of even products minus sum of odd products of different pairs of numbers from 1 to n.

Original entry on oeis.org

0, 2, 5, 29, 39, 129, 150, 374, 410, 860, 915, 1707, 1785, 3059, 3164, 5084, 5220, 7974, 8145, 11945, 12155, 17237, 17490, 24114, 24414, 32864, 33215, 43799, 44205, 57255, 57720, 73592, 74120, 93194, 93789, 116469, 117135, 143849, 144590, 175790
Offset: 1

Views

Author

Keywords

Examples

			{1,2,3} -> 1*2-1*3+2*3 = 5.
{1,2,3,4} -> 1*2-1*3+1*4+2*3+2*4+3*4 = 29.
{1,2,3,4,5} -> 1*2-1*3+1*4-1*5+2*3+2*4+2*5+3*4-3*5+4*5 = 39.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,j,k,w; for i from 1 by 1 to n do a:=0; for j from 1 by 1 to i do w:=j; k:=i; while k>w do a:=a+w*k*(-1)^(w*k); k:=k-1; od; od; print(a); od; end: P(100);
  • Mathematica
    epop[n_]:=Module[{f=Times@@@Subsets[n,{2}]},Total[Select[f,EvenQ]]-Total[ Select[ f,OddQ]]]; Table[epop[Range[n]],{n,40}] (* Harvey P. Dale, Sep 17 2017 *)
  • PARI
    a(n) = {s = 0; for (i=1, n, for (j=i+1, n, p = i*j; if (p % 2, s -= p, s += p););); s;} \\ Michel Marcus, Mar 20 2015

Formula

Empirical g.f.: x^2*(x^5-6*x^4+2*x^3-16*x^2-3*x-2) / ((x-1)^5*(x+1)^4). - Colin Barker, Sep 03 2013
Conjectures from Colin Barker, Mar 20 2015: (Start)
a(n) = (n^4+4*n^3-2*n^2-4*n)/16 for n even.
a(n) = (n^4-1)/16 for n odd. (End)
The above conjectures are true. - Sela Fried, Dec 08 2024
E.g.f.: (x*(1 + 17*x + 6*x^2 + x^3)*cosh(x) - (1 + x - 7*x^2 - 10*x^3 - x^4)*sinh(x))/16. - Stefano Spezia, Dec 09 2024